We are given \( \tan^{-1} \left( \frac{1}{2} \right) + \tan^{-1} \left( \frac{1}{3} \right) \). We can use the formula for the sum of inverse tangents:
\[
\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x + y}{1 - xy} \right)
\]
So:
\[
\tan^{-1} \left( \frac{1}{2} \right) + \tan^{-1} \left( \frac{1}{3} \right) = \tan^{-1} \left( \frac{\frac{1}{2} + \frac{1}{3}}{1 - \left(\frac{1}{2} \times \frac{1}{3}\right)} \right)
\]
First, simplify the numerator:
\[
\frac{1}{2} + \frac{1}{3} = \frac{3 + 2}{6} = \frac{5}{6}
\]
And the denominator:
\[
1 - \left(\frac{1}{2} \times \frac{1}{3}\right) = 1 - \frac{1}{6} = \frac{5}{6}
\]
So the expression becomes:
\[
\tan^{-1} \left( \frac{\frac{5}{6}}{\frac{5}{6}} \right) = \tan^{-1} (1) = \frac{\pi}{4}
\]
Thus, the correct answer is \( \frac{\pi}{4} \).