3. Simplify the Numerator and Denominator:
Numerator:
\(\cos^2(x/2) + \sin^2(x/2) - 2\sin(x/2)\cos(x/2) + \cos^2(x/2) - \sin^2(x/2) = 2\cos^2(x/2) - 2\sin(x/2)\cos(x/2) = 2\cos(x/2)[\cos(x/2) - \sin(x/2)]\)
Denominator:
\(\cos^2(x/2) + \sin^2(x/2) + 2\sin(x/2)\cos(x/2) - \cos^2(x/2) + \sin^2(x/2) = 2\sin^2(x/2) + 2\sin(x/2)\cos(x/2) = 2\sin(x/2)[\sin(x/2) + \cos(x/2)]\)
4. Substitute back into the expression:
Now substitute the simplified numerator and denominator back into the expression:
\[ \tan^{-1} \left( \frac{2\cos(x/2)[\cos(x/2) - \sin(x/2)]}{2\sin(x/2)[\sin(x/2) + \cos(x/2)]} \right) \] Simplifying further: \[ \tan^{-1} \left( \frac{\cos(x/2)[\cos(x/2) - \sin(x/2)]}{\sin(x/2)[\sin(x/2) + \cos(x/2)]} \right) \]
5. Divide the numerator and denominator by \( \cos(x/2) \):
We can divide both the numerator and denominator by \( \cos(x/2) \), yielding:
\[ \tan^{-1} \left( \frac{\cos(x/2) - \sin(x/2)}{\sin(x/2) + \cos(x/2)} \right) \] Now, recall that: \[ 1 - \tan(x/2) = \cos(x/2) - \sin(x/2), \quad 1 + \tan(x/2) = \sin(x/2) + \cos(x/2) \] So, we can express the above equation as: \[ \tan^{-1} \left( \frac{1 - \tan(x/2)}{1 + \tan(x/2)} \right) \]
6. Recognize the tangent difference formula:
We know that: \[ \tan\left(\frac{\pi}{4} - \theta\right) = \frac{1 - \tan(\theta)}{1 + \tan(\theta)} \] Therefore, we have: \[ \tan^{-1} \left( \tan\left( \frac{\pi}{4} - \frac{x}{2} \right) \right) \]
7. Simplify the Inverse Tangent:
Since \( \tan^{-1}(\tan(\theta)) = \theta \), we have: \[ \frac{\pi}{4} - \frac{x}{2} \]
Final Answer:
Therefore, the simplified expression is: \[ \tan^{-1} \left( \frac{1 - \sin(x) + \cos(x)}{1 + \sin(x) - \cos(x)} \right) = \frac{\pi}{4} - \frac{x}{2} \]
Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.
A list of trigonometric equations and their solutions are given below:
Trigonometrical equations | General Solutions |
sin θ = 0 | θ = nπ |
cos θ = 0 | θ = (nπ + π/2) |
cos θ = 0 | θ = nπ |
sin θ = 1 | θ = (2nπ + π/2) = (4n+1) π/2 |
cos θ = 1 | θ = 2nπ |
sin θ = sin α | θ = nπ + (-1)n α, where α ∈ [-π/2, π/2] |
cos θ = cos α | θ = 2nπ ± α, where α ∈ (0, π] |
tan θ = tan α | θ = nπ + α, where α ∈ (-π/2, π/2] |
sin 2θ = sin 2α | θ = nπ ± α |
cos 2θ = cos 2α | θ = nπ ± α |
tan 2θ = tan 2α | θ = nπ ± α |