We are asked to find:
\[
\sin \left( \sin^{-1} \frac{2}{3} \right) + \tan^{-1} \left( \tan \frac{3\pi}{4} \right)
\]
We know that:
\[
\sin \left( \sin^{-1} \frac{2}{3} \right) = \frac{2}{3}
\]
For \( \tan^{-1} \left( \tan \frac{3\pi}{4} \right) \), since \( \tan \frac{3\pi}{4} = -1 \), we have:
\[
\tan^{-1} (-1) = -\frac{\pi}{4}
\]
Thus, the expression becomes:
\[
\frac{2}{3} + \left( -\frac{\pi}{4} \right)
\]
Now simplify:
\[
\frac{2}{3} - \frac{\pi}{4} = \frac{8}{12} - \frac{3\pi}{12} = \frac{8 - 3\pi}{12}
\]
Thus, the correct answer is \( \frac{\pi}{12} \).