We are asked to evaluate the integral: \[ I = \int \sec^3 \theta \, d\theta \] Step 1: Use the identity for \( \sec^3 \theta \)
We can express \( \sec^3 \theta \) as: \[ \sec^3 \theta = \sec^2 \theta \cdot \sec \theta \] Thus, the integral becomes: \[ I = \int \sec^2 \theta \cdot \sec \theta \, d\theta \] Step 2: Substitute and simplify the integral
Now, let's use the substitution method: Let \( u = \sec \theta \), then \( \frac{du}{d\theta} = \sec \theta \tan \theta \), so we can rewrite the integral: \[ I = \sec \theta \int \sec^2 \theta \, d\theta - \int \frac{d(\sec \theta)}{d\theta} \left( \int \sec^2 \theta \, d\theta \right) d\theta \] Step 3: Finish the integration
After simplifying and solving: \[ I = \sec \theta \tan \theta - \int \sec^3 \theta \, d\theta + \int \sec \theta \, d\theta \] \[ I = \frac{1}{2} \left( \sec \theta \tan \theta + \log |\sec \theta + \tan \theta| + c \right) \] Thus, the solution to the integral is: \[ I = \frac{1}{2} \left( \sec \theta \tan \theta + \log |\sec \theta + \tan \theta| + c \right) \] Step 4: Correct Answer:
The correct solution to the integral is: \[ I = \frac{1}{2} \left( \sec \theta \tan \theta + \log |\sec \theta + \tan \theta| + c \right) \]
If $$ \int \frac{\left( \sqrt{1 + x^2} + x \right)^{10}}{\left( \sqrt{1 + x^2} - x \right)^9} \, dx = \frac{1}{m} \left( \left( \sqrt{1 + x^2} + x \right)^n \left( n\sqrt{1 + x^2} - x \right) \right) + C, $$ $\text{where } m, n \in \mathbb{N} \text{ and }$ $C \text{ is the constant of integration, then } m + n$ $\text{ is equal to:}$

Student to attempt either option-(A) or (B):
(A) Write the features a molecule should have to act as a genetic material. In the light of the above features, evaluate and justify the suitability of the molecule that is preferred as an ideal genetic material.
OR
(B) Differentiate between the following:
Convert Propanoic acid to Ethane