Question:

Find: \[ \int \sec^3 \theta \, d\theta \]

Show Hint

When integrating \( \sec^3 \theta \), it's helpful to use trigonometric identities and substitution to simplify the expression. Pay attention to how derivatives of trigonometric functions can be leveraged in substitution.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

We are asked to evaluate the integral: \[ I = \int \sec^3 \theta \, d\theta \] Step 1: {Use the identity for \( \sec^3 \theta \)}
We can express \( \sec^3 \theta \) as: \[ \sec^3 \theta = \sec^2 \theta \cdot \sec \theta \] Thus, the integral becomes: \[ I = \int \sec^2 \theta \cdot \sec \theta \, d\theta \] Step 2: {Substitute and simplify the integral}
Now, let's use the substitution method: Let \( u = \sec \theta \), then \( \frac{du}{d\theta} = \sec \theta \tan \theta \), so we can rewrite the integral: \[ I = \sec \theta \int \sec^2 \theta \, d\theta - \int \frac{d(\sec \theta)}{d\theta} \left( \int \sec^2 \theta \, d\theta \right) d\theta \] Step 3: {Finish the integration}
After simplifying and solving: \[ I = \sec \theta \tan \theta - \int \sec^3 \theta \, d\theta + \int \sec \theta \, d\theta \] \[ I = \frac{1}{2} \left( \sec \theta \tan \theta + \log |\sec \theta + \tan \theta| + c \right) \] Thus, the solution to the integral is: \[ I = \frac{1}{2} \left( \sec \theta \tan \theta + \log |\sec \theta + \tan \theta| + c \right) \] Step 4: {Correct Answer:}
The correct solution to the integral is: \[ I = \frac{1}{2} \left( \sec \theta \tan \theta + \log |\sec \theta + \tan \theta| + c \right) \]
Was this answer helpful?
0
0