1. Decompose into partial fractions:
Let:
\[
\frac{x^2 + 1}{(x^2 + 2)(x^2 + 4)} = \frac{A}{x^2 + 2} + \frac{B}{x^2 + 4}.
\]
Multiply through by \( (x^2 + 2)(x^2 + 4) \):
\[
x^2 + 1 = A(x^2 + 4) + B(x^2 + 2).
\]
2. Expand and compare coefficients:
\[
x^2 + 1 = A x^2 + 4A + B x^2 + 2B = (A + B)x^2 + (4A + 2B).
\]
Equating coefficients of \( x^2 \) and constant terms:
\[
A + B = 1, \quad 4A + 2B = 1.
\]
Solve for \( A \) and \( B \):
\[
A + B = 1 \quad \Rightarrow \quad B = 1 - A,
\]
\[
4A + 2(1 - A) = 1 \quad \Rightarrow \quad 4A + 2 - 2A = 1 \quad \Rightarrow \quad 2A = -1 \quad \Rightarrow \quad A = -\frac{1}{2}.
\]
Substitute \( A \) into \( A + B = 1 \):
\[
-\frac{1}{2} + B = 1 \quad \Rightarrow \quad B = \frac{3}{2}.
\]
3. Rewrite the integral:
\[
\int \frac{x^2 + 1}{(x^2 + 2)(x^2 + 4)} \, dx = \int \frac{-\frac{1}{2}}{x^2 + 2} \, dx + \int \frac{\frac{3}{2}}{x^2 + 4} \, dx.
\]
4. Integrate:
\[
\int \frac{-\frac{1}{2}}{x^2 + 2} \, dx = -\frac{1}{2} \cdot \frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{x}{\sqrt{2}}\right),
\]
\[
\int \frac{\frac{3}{2}}{x^2 + 4} \, dx = \frac{3}{2} \cdot \frac{1}{2} \tan^{-1}\left(\frac{x}{2}\right).
\]
Combine:
\[
\int \frac{x^2 + 1}{(x^2 + 2)(x^2 + 4)} \, dx = -\frac{1}{2\sqrt{2}} \tan^{-1}\left(\frac{x}{\sqrt{2}}\right) + \frac{3}{4} \tan^{-1}\left(\frac{x}{2}\right) + C.
\]
Final Answer:
\[
-\frac{1}{2\sqrt{2}} \tan^{-1}\left(\frac{x}{\sqrt{2}}\right) + \frac{3}{4} \tan^{-1}\left(\frac{x}{2}\right) + C
\]