Question:

Find: 2+sin2x1+cos2xexdx \int \frac{2 + \sin 2x}{1 + \cos 2x} e^x \, dx

Show Hint

For integrals involving trigonometric expressions, simplify using standard identities before integrating.
Updated On: Jan 28, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

1. Simplify the trigonometric expression: Using the identity 1+cos2x=2cos2x 1 + \cos 2x = 2\cos^2 x and sin2x=2sinxcosx \sin 2x = 2\sin x \cos x , rewrite the numerator: 2+sin2x1+cos2x=2+2sinxcosx2cos2x=1cos2x+sinxcosx=sec2x+tanx. \frac{2 + \sin 2x}{1 + \cos 2x} = \frac{2 + 2\sin x \cos x}{2\cos^2 x} = \frac{1}{\cos^2 x} + \frac{\sin x}{\cos x} = \sec^2 x + \tan x. 2.Rewrite the integral: 2+sin2x1+cos2xexdx=(sec2x+tanx)exdx. \int \frac{2 + \sin 2x}{1 + \cos 2x} e^x \, dx = \int (\sec^2 x + \tan x) e^x \, dx. 3. Separate the terms: (sec2x+tanx)exdx=sec2xexdx+tanxexdx. \int (\sec^2 x + \tan x) e^x \, dx = \int \sec^2 x e^x \, dx + \int \tan x e^x \, dx. 4. Solve the integrals: The first integral: sec2xexdx=extanx+C1. \int \sec^2 x e^x \, dx = e^x \tan x + C_1. The second integral: tanxexdx=exlnsecx+C2. \int \tan x e^x \, dx = e^x \ln|\sec x| + C_2. 5. Combine the results: 2+sin2x1+cos2xexdx=ex(tanx+lnsecx)+C. \int \frac{2 + \sin 2x}{1 + \cos 2x} e^x \, dx = e^x (\tan x + \ln|\sec x|) + C. Final Answer: ex(tanx+lnsecx)+C. \boxed{e^x (\tan x + \ln|\sec x|) + C.}
Was this answer helpful?
0
0

Top Questions on Absolute maxima and Absolute minima

View More Questions