Step 1: Rewrite the given integral
The integral is:
\[
I = \int e^x \left( \frac{x}{\sqrt{1+x^2}} + \frac{1}{(1+x^2)^{3/2}} \right) dx.
\]
Let:
\[
f(x) = \frac{x}{\sqrt{1+x^2}}.
\]
Step 2: Differentiate \( f(x) \)
\[
f'(x) = \frac{\sqrt{1+x^2} - \frac{x \cdot x}{\sqrt{1+x^2}}}{1+x^2}.
\]
Simplify the numerator:
\[
f'(x) = \frac{\sqrt{1+x^2} - \frac{x^2}{\sqrt{1+x^2}}}{(1+x^2)} = \frac{1}{(1+x^2)^{3/2}}.
\]
Thus, the integral can be rewritten as:
\[
I = \int e^x \left( f(x) + f'(x) \right) dx.
\]
Step 3: Apply the standard integral result
Using:
\[
\int e^x \left( f(x) + f'(x) \right) dx = e^x f(x) + C,
\]
we substitute \( f(x) = \frac{x}{\sqrt{1+x^2}} \), giving:
\[
I = e^x \frac{x}{\sqrt{1+x^2}} + C.
\]
Final Answer:
\[
\boxed{I = e^x \frac{x}{\sqrt{1+x^2}} + C.}
\]
Explanation:
1. Splitting the Integral: The given integral is broken into two terms.
2. Choosing \( f(x) \): We set \( f(x) = \frac{x}{\sqrt{1+x^2}} \), ensuring that its derivative matches the second term.
3. Applying the Formula: Using the integral result for \( e^x (f(x) + f'(x)) \), we directly obtain the solution.
4. Substituting \( f(x) \): Finally, substituting \( f(x) \) yields the required answer.