Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Write a letter to the editor of a local newspaper expressing your concerns about the increasing “Pollution levels in your city”. You are an environmentalist, Radha/Rakesh, 46, Peak Colony, Haranagar. You may use the following cues along with your own ideas:
Simar, Tanvi, and Umara were partners in a firm sharing profits and losses in the ratio of 5 : 6 : 9. On 31st March, 2024, their Balance Sheet was as follows:
Liabilities | Amount (₹) | Assets | Amount (₹) |
Capitals: | Fixed Assets | 25,00,000 | |
Simar | 13,00,000 | Stock | 10,00,000 |
Tanvi | 12,00,000 | Debtors | 8,00,000 |
Umara | 14,00,000 | Cash | 7,00,000 |
General Reserve | 7,00,000 | Profit and Loss A/c | 2,00,000 |
Trade Payables | 6,00,000 | ||
Total | 52,00,000 | Total | 52,00,000 |
Umara died on 30th June, 2024. The partnership deed provided for the following on the death of a partner:
Differentiability of a function A function f(x) is said to be differentiable at a point of its domain if it has a finite derivative at that point. Thus f(x) is differentiable at x = a
\(\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}\)
⇒ f'(a – 0) = f'(a + 0)
⇒ left-hand derivative = right-hand derivative.
Thus function f is said to be differentiable if left hand derivative & right hand derivative both exist finitely and are equal.
If f(x) is differentiable then its graph must be smooth i.e. there should be no break or corner.
Note:
(i) Every differentiable function is necessarily continuous but every continuous function is not necessarily differentiable i.e. Differentiability ⇒ continuity but continuity ⇏ differentiability
(ii) For any curve y = f(x), if at any point \(\frac{d y}{d x}\) = 0 or does not exist then, the point is called “critical point”.
3. Differentiability in an interval
(a) A function fx) is said to be differentiable in an open interval (a, b), if it is differentiable at every point of the interval.
(b) A function f(x) is differentiable in a closed interval [a, b] if it is