We are given the expression \( \cot^{-1} \left( \tan \frac{\pi}{7} \right) \).
Recall that:
\[
\cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x
\]
So,
\[
\cot^{-1} \left( \tan \frac{\pi}{7} \right) = \frac{\pi}{2} - \frac{\pi}{7}
\]
\[
= \frac{7\pi}{14} - \frac{\pi}{7} = \frac{5\pi}{14}
\]
Thus, the correct answer is \( \frac{5\pi}{14} \).