Question:

Find \( \cot^{-1} \left( \tan \frac{\pi}{7} \right) \).

Show Hint

To solve inverse trigonometric expressions, use the identity \( \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x \).
  • \( \frac{\pi}{7} \)
  • \( \frac{5\pi}{14} \)
  • \( \frac{9\pi}{14} \)
  • \( \frac{3\pi}{14} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are given the expression \( \cot^{-1} \left( \tan \frac{\pi}{7} \right) \). Recall that: \[ \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x \] So, \[ \cot^{-1} \left( \tan \frac{\pi}{7} \right) = \frac{\pi}{2} - \frac{\pi}{7} \] \[ = \frac{7\pi}{14} - \frac{\pi}{7} = \frac{5\pi}{14} \] Thus, the correct answer is \( \frac{5\pi}{14} \).
Was this answer helpful?
0
0