Find ∫(cos√x) dx=?
Let's solve the integral $\int \cos(\sqrt{x}) \, dx$.
1. Substitution Let $u = \sqrt{x}$. Then $x = u^2$, and $dx = 2u \, du$.
Substituting these into the integral, we have: $\int \cos(\sqrt{x}) \, dx = \int \cos(u) \cdot 2u \, du = 2 \int u \cos(u) \, du$
2. Integration by Parts Now, we need to use integration by parts to solve $\int u \cos(u) \, du$. Recall the integration by parts formula: $\int v \, dw = vw - \int w \, dv$
Let $v = u$ and $dw = \cos(u) \, du$. Then $dv = du$ and $w = \sin(u)$.
Applying the formula: $\int u \cos(u) \, du = u \sin(u) - \int \sin(u) \, du$
$\int u \cos(u) \, du = u \sin(u) - (-\cos(u)) + C_1$
$\int u \cos(u) \, du = u \sin(u) + \cos(u) + C_1$
3. Substitute Back Now, substitute this result back into our integral and then substitute $u = \sqrt{x}$: $2 \int u \cos(u) \, du = 2(u \sin(u) + \cos(u)) + C$
$2 \int u \cos(u) \, du = 2(\sqrt{x} \sin(\sqrt{x}) + \cos(\sqrt{x})) + C$
Final Answer Therefore, the integral is: $\int \cos(\sqrt{x}) \, dx = 2\sqrt{x} \sin(\sqrt{x}) + 2\cos(\sqrt{x}) + C$
Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.
A list of trigonometric equations and their solutions are given below:
Trigonometrical equations | General Solutions |
sin θ = 0 | θ = nπ |
cos θ = 0 | θ = (nπ + π/2) |
cos θ = 0 | θ = nπ |
sin θ = 1 | θ = (2nπ + π/2) = (4n+1) π/2 |
cos θ = 1 | θ = 2nπ |
sin θ = sin α | θ = nπ + (-1)n α, where α ∈ [-π/2, π/2] |
cos θ = cos α | θ = 2nπ ± α, where α ∈ (0, π] |
tan θ = tan α | θ = nπ + α, where α ∈ (-π/2, π/2] |
sin 2θ = sin 2α | θ = nπ ± α |
cos 2θ = cos 2α | θ = nπ ± α |
tan 2θ = tan 2α | θ = nπ ± α |