Question:

Find ∫(cos√x) dx=?

Updated On: Apr 3, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Let's solve the integral $\int \cos(\sqrt{x}) \, dx$. 

1. Substitution Let $u = \sqrt{x}$. Then $x = u^2$, and $dx = 2u \, du$. 
Substituting these into the integral, we have: $\int \cos(\sqrt{x}) \, dx = \int \cos(u) \cdot 2u \, du = 2 \int u \cos(u) \, du$ 

2. Integration by Parts Now, we need to use integration by parts to solve $\int u \cos(u) \, du$. Recall the integration by parts formula: $\int v \, dw = vw - \int w \, dv$ 
Let $v = u$ and $dw = \cos(u) \, du$. Then $dv = du$ and $w = \sin(u)$. 
Applying the formula: $\int u \cos(u) \, du = u \sin(u) - \int \sin(u) \, du$ 
$\int u \cos(u) \, du = u \sin(u) - (-\cos(u)) + C_1$ 
$\int u \cos(u) \, du = u \sin(u) + \cos(u) + C_1$ 

3. Substitute Back Now, substitute this result back into our integral and then substitute $u = \sqrt{x}$: $2 \int u \cos(u) \, du = 2(u \sin(u) + \cos(u)) + C$ 
$2 \int u \cos(u) \, du = 2(\sqrt{x} \sin(\sqrt{x}) + \cos(\sqrt{x})) + C$ 

Final Answer Therefore, the integral is: $\int \cos(\sqrt{x}) \, dx = 2\sqrt{x} \sin(\sqrt{x}) + 2\cos(\sqrt{x}) + C$

Was this answer helpful?
18
0

Concepts Used:

Trigonometric Equations

Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. It is expressed as ratios of sine(sin), cosine(cos), tangent(tan), cotangent(cot), secant(sec), cosecant(cosec) angles. For example, cos2 x + 5 sin x = 0 is a trigonometric equation. All possible values which satisfy the given trigonometric equation are called solutions of the given trigonometric equation.

A list of trigonometric equations and their solutions are given below: 

Trigonometrical equationsGeneral Solutions
sin θ = 0θ = nπ
cos θ = 0θ = (nπ + π/2)
cos θ = 0θ = nπ
sin θ = 1θ = (2nπ + π/2) = (4n+1) π/2
cos θ = 1θ = 2nπ
sin θ = sin αθ = nπ + (-1)n α, where α ∈ [-π/2, π/2]
cos θ = cos αθ = 2nπ ± α, where α ∈ (0, π]
tan θ = tan αθ = nπ + α, where α ∈ (-π/2, π/2]
sin 2θ = sin 2αθ = nπ ± α
cos 2θ = cos 2αθ = nπ ± α
tan 2θ = tan 2αθ = nπ ± α