The correct answer is: \(log|x-y|=x+y+1\) \((x-y)(dx+dy)=dx-dy\) \(⇒(x-y+1)dy=(1-x+y)dx\) \(⇒\frac{dx}{dy}=\frac{1-x+y}{x-y+1}\) \(⇒\frac{dy}{dx}=\frac{1-(x-y)}{1+(x-y)}...(1)\) Let \(x-y=t.\) \(⇒\frac{d}{dx}(x-y)=\frac{dt}{dx}\) \(⇒1-\frac{dy}{dx}=\frac{dt}{dx}\) \(⇒1-\frac{dt}{dx}=\frac{dy}{dx}\) Substituting the values of \(x-y\) and \(\frac{dy}{dx}\) in equation(1),we get: \(1-\frac{dt}{dx}=\frac{1-t}{1+t}\) \(⇒\frac{dt}{dx}=1-(\frac{1-t}{1+t})\) \(⇒\frac{dt}{dx}=\frac{(1+t)-(1-t)}{1+t}\) \(⇒\frac{dt}{dx}=\frac{2t}{1+t}\) \(⇒(\frac{1+t}{t})dt=2dx\) \(⇒(1+\frac{1}{t})dt=2dx....(2)\) Integrating both sides,we get: \(t+log|t|=2x+C\) \(⇒(x-y)+log|x-y|=2x+C\) \(⇒log|x-y|=x+y+C...(3)\) Now,\(⇒log|x-y|=x+y+C...(3)\) Therefore,equation(3)becomes: \(log\,1=0-1+C\) \(⇒C=1\) Substituting \(C=1\) in equation(3),we get: \(log|x-y|=x+y+1\) This is the required particular solution of the given differential equation.