To solve the problem, we need to insert '+' or '-' signs between the numbers in the expression \(1\, 2^3\,\,3^3 \, \,1\,\,4^3\) such that the expression equals 31. Let's evaluate each option:
Option 1: + + - -
\(1 + 2^3 + 3^3 - 1 - 4^3\)
Calculating, we get:
\(1 + 8 + 27 - 1 - 64\)
= \(36 - 65 = -29\)
This does not equal 31.
Option 2: + + + -
\(1 + 2^3 + 3^3 + 1 - 4^3\)
Calculating, we get:
\(1 + 8 + 27 + 1 - 64\)
= \(37 - 64 = -27\)
This also does not equal 31.
Option 3: - - + +
\(1 - 2^3 - 3^3 + 1 + 4^3\)
Calculating, we get:
\(1 - 8 - 27 + 1 + 64\)
= \(2 - 35 + 64 = 31\)
This equals 31, making this option correct.
Option 4: - - - +
\(1 - 2^3 - 3^3 - 1 + 4^3\)
Calculating, we get:
\(1 - 8 - 27 - 1 + 64\)
= \(0 - 35 + 64 = 29\)
This does not equal 31.
Therefore, the correct signs to insert are given by option 3: - - + +.