Fifty feet away three male lions lay by the road. They didn’t appear to have a hair on their heads. Noting the color of their noses (leonine noses darken as they age, from pink to black), Craig estimated that they were six years old-young adults. ”This is wonderful!” he said, after staring at them for several moments. ”This is what we came to see. They really are maneless.” Craig, a professor at the University of Minnesota, is arguably the leading expert on the majestic Serengeti lion, whose head is mantled in long, thick hair. He and Peyton West, a doctoral student who has been working with him in Tanzania, had never seen the Tsavo lions that live some 200 miles east of the Serengeti. The scientists had partly suspected that the maneless males were adolescents mistaken for adults by amateur observers. Now they knew better.
The Tsavo research expedition was mostly Peyton’s show. She had spent several years in Tanzania, compiling the data she needed to answer a question that ought to have been answered long ago: Why do lions have manes? It’s the only cat, wild or domestic, that displays such ornamentation. In Tsavo she was attacking the riddle from the opposite angle. Why do its lions not have manes? (Some “maneless” lions in Tsavo East do have partial manes, but they rarely attain the regal glory of the Serengeti lions.) Does environmental adaptation account for the trait? Are the lions of Tsavo, as some people believe, a distinct subspecies of their Serengeti cousins?
The Serengeti lions have been under continuous observation for more than 35 years, beginning with George Schaller’s pioneering work in the 1960s. But the lions in Tsavo, Kenya’s oldest and largest protected ecosystem, have hardly been studied. Consequently, legends have grown up around them. Not only do they look different, according to the myths, they behave differently, displaying greater cunning and aggressiveness. ”Remember too,” Kenya: The Rough Guide warns, ”Tsavo’s lions have a reputation of ferocity.” Their fearsome image became well-known in 1898, when two males stalled construction of what is now Kenya Railways by allegedly killing and eating 135 Indian and African laborers. A British Army officer in charge of building a railroad bridge over the Tsavo River, Lt. Col. J. H. Patterson, spent nine months pursuing the pair before he brought them to bay and killed them. Stuffed and mounted, they now glare at visitors to the Field Museum in Chicago. Patterson’s account of the loneing reign of terror, The Man-Eaters of Tsavo, was an international best-seller when published in 1907. Still in print, the book has made Tsavo’s lions notorious. That annoys some scientists. ”People don’t want to give up on mythology,” Dennis King told me one day. The zoologist has been working in Tsavo off and on for four years. ”I am so sick of this man-eater business. Patterson made a helluva lot of money off that story, but Tsavo’s lions are no more likely to turn man-eater than lions from elsewhere.” But tales of their savagery and wiliness don’t all come from sensationalist authors looking to make a buck. Tsavo lions are generally larger than lions elsewhere, enabling them to take down the predominant prey animal in Tsavo, the Cape buffalo, one of the strongest, most aggressive animals of Earth. The buffalo don’t give up easily: They often kill or severely injure an attacking lion, and a wounded lion might be more likely to turn to cattle and humans for food.
And other prey is less abundant in Tsavo than in other traditional lion haunts. A hungry lion is more likely to attack humans. Safari guides and Kenya Wildlife Service rangers tell of lions attacking Land Rovers, raiding camps, stalking tourists. Tsavo is a tough neighborhood, they say, and it breeds tougher lions.
But are they really tougher? And if so, is there any connection between their manelessness and their ferocity? An intriguing hypothesis was advanced two years ago by Gnosek and Peternahns: Tsavo lions may be similar to the unnamed cave lions of the Pleistocene. The Serengeti variety is among the most evolved of the species-the latest model, so to speak-while certain morphological differences in Tsavo lions (bigger bodies, smaller skulls, and maybe even lack of a mane) suggest that they are closer to the primitive ancestor of all lions. Craig and Peyton had serious doubts about this idea, but admitted that Tsavo lions pose a mystery to science.


When people who are talking don’t share the same culture, knowledge, values, and assumptions, mutual understanding can be especially difficult. Such understanding is possible through the negotiation of meaning. To negotiate meaning with someone, you have to become aware of and respect both the differences in your backgrounds and when these differences are important. You need enough diversity of cultural and personal experience to be aware that divergent world views exist and what they might be like. You also need the flexibility in world view, and a generous tolerance for mistakes, as well as a talent for finding the right metaphor to communicate the relevant parts of unshared experiences or to highlight the shared experiences while demphasizing the others. Metaphorical imagination is a crucial skill in creating rapport and in communicating the nature of unshared experience. This skill consists, in large measure, of the ability to bend your world view and adjust the way you categorize your experiences. Problems of mutual understanding are not exotic; they arise in all extended conversations where understanding is important.
When it really counts, meaning is almost never communicated according to the CONDUIT metaphor, that is, where one person transmits a fixed, clear proposition to another by means of expressions in a common language, where both parties have all the relevant common knowledge, assumptions, values, etc. When the chips are down, meaning is negotiated: you slowly figure out what you have in common, what it is safe to talk about, how you can communicate unshared experience or create a shared vision. With enough flexibility in bending your world view and with luck and charity, you may achieve some mutual understanding.
Communication theories based on the CONDUIT metaphor turn from the pathetic to the evil when they are applied indiscriminately on a large scale, say, in government surveillance or computerized files. There, what is most crucial for real understanding is almost never included, and it is assumed that the words in the file have meaning in themselves—disembodied, objective, understandable meaning. When a society lives by the CONDUITmetaphor on a large scale, misunderstanding, persecution, and much worse are the likely products.
Later, I realized that reviewing the history of nuclear physics served another purpose as well: It gave the lie to the naive belief that the physicists could have come together when nuclear fission was discovered (in Nazi Germany!) and agreed to keep the discovery a secret, thereby sparing humanity such a burden. No. Given the development of nuclear physics up to 1938, development that physicists throughout the world pursued in all innocence of any intention of finding the engine of a new weapon of mass destruction—only one of them, the remarkable Hungarian physicist Leo Szilard, took that possibility seriously—the discovery of nuclear fission was inevitable. To stop it, you would have had to stop physics. If German scientists hadn’t made the discovery when they did, French, American, Russian, Italian, or Danish scientists would have done so, almost certainly within days or weeks. They were all working at the same cutting edge, trying to understand the strange results of a simple experiment bombarding uranium with neutrons. Here was no Faustian bargain, as movie directors and other naifs still find it intellectually challenging to imagine. Here was no evil machinery that the noble scientists might hide from the problems and the generals. To the contrary, there was a high insight into how the world works, an energetic reaction, older than the earth, that science had finally devised the instruments and arrangements to coart forth. “Make it seem inevitable,” Louis Pasteur used to advise his students when they prepared to write up their discoveries. But it was. To wish that it might have been ignored or suppressed is barbarous. “Knowledge,” Niels Bohr once noted, “is itself the basis for civilization.” You cannot have the one without the other; the one depends upon the other. Nor can you have only benevolent knowledge; the scientific method doesn’t filter for benevolence. Knowledge has consequences, not always intended, not always comfortable, but always welcome. The earth revolves around the sun, not the sun around the earth. “It is a profound and necessary truth,” Robert Oppenheimer would say, “that the deep things in science are not found because they are useful; they are found because it was possible to find them.”
...Bohr proposed once that the goal of science is not universal truth. Rather, he argued, the modest but relentless goal of science is “the gradual removal of prejudices.” The discovery that the earth revolves around the sun has gradually removed the prejudice that the earth is the center of the universe. The discovery of microbes is gradually removing the prejudice that disease is a punishment from God. The discovery of evolution is gradually removing the prejudice that Homo sapiens is a separate and special creation.
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: