Factorise each of the following:
(i) 8a 3 + b 3 + 12a 2b + 6ab2
(ii) 8a 3 – b 3 – 12a 2b + 6ab2
(iii) 27 – 125a 3 – 135a + 225a 2
(iv) 64a 3 – 27b 3 – 144a 2b + 108ab2
(v) 27p 3 – \(\frac{1}{ 216}\) – \(\frac{9 }{ 2}\) p2 + \(\frac{1 }{4}\) p
It is known that,
(a + b)3 = a3 + b3 + 3a2b + 3ab2
and (a - b)3 = a3 - b3 - 3a2b + 3ab2
(i) 8a3 + b3 + 12a2b + 6ab2
= (2a)3 + (b)3 + 3(2a)2 b + 3(2a) (b)2
= (2a + b)3 = (2a + b) (2a + b) (2a + b)
(ii) 8a 3 – b 3 – 12a 2b + 6ab2
= (2a)3 - (b)3 - 3(2a)2 b + 3(2a)(b)2
= (2a - b)3
= (2a - b)(2a - b) (2a - b)
(iii) 27 – 125a 3 – 135a + 225a 2
= (3)3 - (5a)3 - 3(3)2 (5a) + 3(3)(5a)2
= (3 - 5a)3 = (3 - 5a) (3 - 5a) (3 - 5a)
(iv) 64a 3 – 27b 3 – 144a 2b + 108ab2
= (4a)3 - (3b)3 - 3(4a)2(3b) + 3(4a) (3b)2
= (4a - 3b)3 = (4a - 3b) (4a - 3b) (4a - 3b)
(v) 27p3 – \(\frac{1}{ 216}\) – \(\frac{9 }{ 2}\) p2 + \(\frac{1 }{4}\) p
= (3p)3 - (\(\frac{1 }{6}\))3 - 3 (3p)2 (\(\frac{1 }{6}\)) + 3 (3p) (\(\frac{1 }{6}\))2
= (3p - \(\frac{1 }{6}\))3
= (3p - \(\frac{1 }{6}\))3 (3p - \(\frac{1 }{6}\))3 (3p - \(\frac{1 }{6}\))3.
A driver of a car travelling at \(52\) \(km \;h^{–1}\) applies the brakes Shade the area on the graph that represents the distance travelled by the car during the period.
Which part of the graph represents uniform motion of the car?