Question:

Explain why

 (a) Two bodies at different temperatures T1 and T2 if brought in thermal contact do not necessarily settle to the mean temperature \(\frac{(T1 + T2 )}{2}\)

(b) The coolant in a chemical or a nuclear plant (i.e., the liquid used to prevent the different parts of a plant from getting too hot) should have high specific heat. 

(c) Air pressure in a car tyre increases during driving. 

(d) The climate of a harbour town is more temperate than that of a town in a desert at the same latitude.

Updated On: Nov 2, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

When two bodies at different temperatures T1 and T2 are brought in thermal contact, heat flows from the body at the higher temperature to the body at the lower temperature till equilibrium is achieved, i.e., the temperatures of both the bodies become equal. The equilibrium temperature is equal to the mean temperature  \(\frac{(T1 + T2)}{2}\) only when the thermal capacities of both the bodies are equal. 

The coolant in a chemical or nuclear plant should have a high specific heat. This is because higher the specific heat of the coolant, higher is its heat-absorbing capacity and vice versa. Hence, a liquid having a high specific heat is the best coolant to be used in a nuclear or chemical plant. This would prevent different parts of the plant from getting too hot

When a car is in motion, the air temperature inside the car increases because of the motion of the air molecules. According to Charles’ law, temperature is directly proportional to pressure. Hence, if the temperature inside a tyre increases, then the air pressure in it will also increase. 

A harbour town has a more temperate climate (i.e., without the extremes of heat or cold) than a town located in a desert at the same latitude. This is because the relative humidity in a harbour town is more than it is in a desert town

Was this answer helpful?
0
0

Top Questions on Thermal equilibrium

Concepts Used:

Equilibrium

An equilibrium represents a state in a process when the observable properties such as color, temperature, pressure, concentration etc do not show any change.

The word equilibrium means ‘balance’ which indicates that a chemical reaction represents a balance between the reactants and products taking part in the reaction. The equilibrium state is also noticed in certain physical processes such as the melting point of ice at 0℃, both ice and water are present at equilibrium.

In the case of physical processes such as the melting of solid, dissolution of salt in water etc., the equilibrium is called physical equilibrium while the equilibrium associated with chemical reaction is known as chemical equilibrium.

Equilibrium in Chemical changes

The chemical equilibrium in a reversible reaction is the state at which both forward and backward reactions occur at the same speed.

The stage of the reversible reaction at which the concentration of the reactants and products do not change with time is called the equilibrium state.

Read More: Calculating Equilibrium Concentration

Types of Chemical Equilibrium

There are two types of chemical equilibrium:

  • Homogeneous Equilibrium
  • Heterogeneous Equilibrium

Homogenous Chemical Equilibrium

In this type, the reactants and the products of chemical equilibrium are all in the same phase. Homogenous equilibrium can be further divided into two types: Reactions in which the number of molecules of the products is equal to the number of molecules of the reactants. For example,

  • H2 (g) + I2 (g) ⇌ 2HI (g)
  • N2 (g) + O2 (g) ⇌ 2NO (g)

Reactions in which the number of molecules of the products is not equal to the total number of reactant molecules. For example,

  • 2SO2 (g) + O2 (g) ⇌ 2SO3 (g)
  • COCl2 (g) ⇌ CO (g) + Cl2 (g)

Heterogeneous Chemical Equilibrium

In this type, the reactants and the products of chemical equilibrium are present in different phases. A few examples of heterogeneous equilibrium are listed below.

  • CO2 (g) + C (s) ⇌ 2CO (g) 
  • CaCO3 (s) ⇌ CaO (s) + CO2 (g)

Thus, the different types of chemical equilibrium are based on the phase of the reactants and products.

Check Out: Equilibrium Important Questions