Heat is supplied to the system at a rate of 100 W.
∴Heat supplied, Q = 100 J/s
The system performs at a rate of 75 J/s.
∴Work done, W = 75 J/s
From the first law of thermodynamics, we have:
Q = U + W
Where,
U = Internal energy
∴ U = Q – W
= 100 – 75
= 25 J/s
= 25 W
Therefore, the internal energy of the given electric heater increases at a rate of 25 W.
Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following :
(a) What is the final pressure of the gas in A and B ?
(b) What is the change in internal energy of the gas ?
(c) What is the change in the temperature of the gas ?
Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following :
(a) What is the final pressure of the gas in A and B ?
(b) What is the change in internal energy of the gas ?
(c) What is the change in the temperature of the gas ?
Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following 1) What is the final pressure of the gas in A and B? 2) What is the change in internal energy of the gas? 3) What is the change in the temperature of the gas?
Explain why
(a) Two bodies at different temperatures T1 and T2 if brought in thermal contact do not necessarily settle to the mean temperature \(\frac{(T1 + T2 )}{2}\).
(b) The coolant in a chemical or a nuclear plant (i.e., the liquid used to prevent the different parts of a plant from getting too hot) should have high specific heat.
(c) Air pressure in a car tyre increases during driving.
(d) The climate of a harbour town is more temperate than that of a town in a desert at the same latitude.
Figures 9.20(a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of the two figures is incorrect ? Why ?
Internal Energy is the microscopic energy contained within a system formed by the disordered movement of molecules (kinetic energy), Potential energy, and the nuclear energy present within the atoms of these molecules. It should be noted that the kinetic energy of molecules present in the system and not the kinetic energy of the system is calculated in the Internal Energy.
The Internal Energy is denoted by ‘U’ and is measured in Joules (J). This Internal Energy can increase with the increase in temperature and change of state or phase (from solid to liquid to gas). Heat Reservoirs store this Internal Energy.
Different Substances will have different Internal Energies depending on the atom, temperature, bonds, pressure, etc.
There are two forms of Internal Energy namely Kinetic Energy and Potential Energy