Step 1: Find conductivity \(\kappa\).
Conductance \(G = \dfrac{1}{R} = \dfrac{1}{480}\ \text{S} = 2.0833\times 10^{-3}\ \text{S}\).
\(\kappa = (\text{cell constant}) \times G = 1.29\ \text{cm}^{-1} \times 2.0833\times 10^{-3}\ \text{S} = 2.6875\times 10^{-3}\ \text{S cm}^{-1}.\)
Step 2: Calculate molar conductivity.
\(c = 0.02\ \text{mol L}^{-1}\).
\[
\Lambda_m = \kappa \frac{1000}{c}
= 2.6875\times 10^{-3}\ \frac{1000}{0.02}
= 2.6875\times 10^{-3}\times 5.0\times 10^{4}
= 1.34375\times 10^{2}\ \text{S cm}^2\text{ mol}^{-1}.
\]
\[
\boxed{\Lambda_m \approx 1.34\times 10^{2}\ \text{S cm}^2\ \text{mol}^{-1}}
\]