Using Binomial Theorem, the given expression \(( 1 +\frac{ x}{2} - \frac{2}{x})^4\) can be expanded as
\([ ( 1 +\frac{ x}{2} )- \frac{2}{x} ]^4\)
\(=\space^ 4C_0(1 + \frac{x}{2})^4 - \space^4C_1(1 +\frac{ x}{2})^3(\frac{2}{x}) + \space^4C_2(1 +\frac{ x}{2})^2(\frac{2}{x})^2 - \space^4C_3(1 +\frac{ x}{2}) (\frac{2}{x})^3 + \space^4C_4(\frac{2}{x})^4\)
\(= (1 +\frac{ x}{2})^4 -4(1+\frac{x}{2})^3(\frac{2}{x}) + 6(1+x+ \frac{x^2}{4}) (\frac{4}{x^2})- 4(1 + \frac{x}{2})(\frac{8}{x^3})+\frac{16}{x^4}\)
\(= (1 + \frac{x}{2})^4 - \frac{8}{x}((1 +\frac{ x}{2})^3 + \frac{24}{x^2 }+\frac{ 24}{x }+6 - \frac{32}{x^3} -\frac{16}{x^2} +\frac{ 16}{x^4}\)
\(= (1 + \frac{x}{2})^4 - \frac{8}{x}((1 +\frac{ x}{2})^3 + \frac{8}{x^2} +\frac{24}{x }+6 + \frac{32}{x^3} +\frac{16}{x^4} ......(1)\)
Again by using Binomial Theorem, we obtain
\((1 +\frac{ x}{2})^4 = \space^3C_0 (1)^4+\space^ 4C_1(1)^3(\frac{x}{2})+ \space ^4C_2(1)^2(\frac{x}{2})^2 + \space^4C_3(1)(\frac{x}{2})^3 + \space^4C_4(\frac{x}{2})^4\) \(=1+4 \times\frac{x}{2}+6\times \frac{x^2}{4} + 4 \times \frac{x^3}{8} +\frac{x^4}{16} ...(2)\)
\((1 + \frac{x}{2})^3= \space^3C_0(1 +\frac{ x}{2})^3 - \space^3C_1(1 )^2 (\frac{x}{2})+\space^ 3C_2(1) (\frac{x}{2})^2 - \space^3C_3( \frac{x}{2})^3\) \(=1 + \frac{3x}{2} + \frac{3x^2}{4} + \frac{x^3}{8} ....(3)\)
from (1), (2) and (3), we obtain
\([(1 + \frac{x}{2}) - \frac{2}{x}]^4\)
\(= 1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} +\frac{ x^4}{16} -\frac{ 8}{x }(1 + \frac{3x}{2} +\frac{ 3x^2}{4} +\frac{ x^3}{8}) + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4}\)
\(= 1 + 2x + \frac{3}{2}x^2 + \frac{x^3}{2} + \frac{x^4}{16} - \frac{8}{x} -12 - 6x - x^2 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4}\)
\(= \frac{16}{x} + \frac{8}{x^2} - \frac{32}{x^3} + \frac{16}{x^4} - 4x = \frac{x^2}{2} +\frac{ x^3}{2} +\frac{ x^4}{16} -5\)
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
Figure 8.9 shows the strain-stress curve for a given material. What are (a) Young’s modulus and (b) approximate yield strength for this material?

Give reasons for the following.
(i) King Tut’s body has been subjected to repeated scrutiny.
(ii) Howard Carter’s investigation was resented.
(iii) Carter had to chisel away the solidified resins to raise the king’s remains.
(iv) Tut’s body was buried along with gilded treasures.
(v) The boy king changed his name from Tutankhaten to Tutankhamun.
Draw the Lewis structures for the following molecules and ions: \(H_2S\), \(SiCl_4\), \(BeF_2\), \(CO_3^{2-}\) , \(HCOOH\)
| λ (nm) | 500 | 450 | 400 |
|---|---|---|---|
| v × 10–5(cm s–1) | 2.55 | 4.35 | 5.35 |
The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is
