Using Binomial Theorem, the given expression \(( 1 +\frac{ x}{2} - \frac{2}{x})^4\) can be expanded as
\([ ( 1 +\frac{ x}{2} )- \frac{2}{x} ]^4\)
\(=\space^ 4C_0(1 + \frac{x}{2})^4 - \space^4C_1(1 +\frac{ x}{2})^3(\frac{2}{x}) + \space^4C_2(1 +\frac{ x}{2})^2(\frac{2}{x})^2 - \space^4C_3(1 +\frac{ x}{2}) (\frac{2}{x})^3 + \space^4C_4(\frac{2}{x})^4\)
\(= (1 +\frac{ x}{2})^4 -4(1+\frac{x}{2})^3(\frac{2}{x}) + 6(1+x+ \frac{x^2}{4}) (\frac{4}{x^2})- 4(1 + \frac{x}{2})(\frac{8}{x^3})+\frac{16}{x^4}\)
\(= (1 + \frac{x}{2})^4 - \frac{8}{x}((1 +\frac{ x}{2})^3 + \frac{24}{x^2 }+\frac{ 24}{x }+6 - \frac{32}{x^3} -\frac{16}{x^2} +\frac{ 16}{x^4}\)
\(= (1 + \frac{x}{2})^4 - \frac{8}{x}((1 +\frac{ x}{2})^3 + \frac{8}{x^2} +\frac{24}{x }+6 + \frac{32}{x^3} +\frac{16}{x^4} ......(1)\)
Again by using Binomial Theorem, we obtain
\((1 +\frac{ x}{2})^4 = \space^3C_0 (1)^4+\space^ 4C_1(1)^3(\frac{x}{2})+ \space ^4C_2(1)^2(\frac{x}{2})^2 + \space^4C_3(1)(\frac{x}{2})^3 + \space^4C_4(\frac{x}{2})^4\) \(=1+4 \times\frac{x}{2}+6\times \frac{x^2}{4} + 4 \times \frac{x^3}{8} +\frac{x^4}{16} ...(2)\)
\((1 + \frac{x}{2})^3= \space^3C_0(1 +\frac{ x}{2})^3 - \space^3C_1(1 )^2 (\frac{x}{2})+\space^ 3C_2(1) (\frac{x}{2})^2 - \space^3C_3( \frac{x}{2})^3\) \(=1 + \frac{3x}{2} + \frac{3x^2}{4} + \frac{x^3}{8} ....(3)\)
from (1), (2) and (3), we obtain
\([(1 + \frac{x}{2}) - \frac{2}{x}]^4\)
\(= 1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} +\frac{ x^4}{16} -\frac{ 8}{x }(1 + \frac{3x}{2} +\frac{ 3x^2}{4} +\frac{ x^3}{8}) + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4}\)
\(= 1 + 2x + \frac{3}{2}x^2 + \frac{x^3}{2} + \frac{x^4}{16} - \frac{8}{x} -12 - 6x - x^2 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4}\)
\(= \frac{16}{x} + \frac{8}{x^2} - \frac{32}{x^3} + \frac{16}{x^4} - 4x = \frac{x^2}{2} +\frac{ x^3}{2} +\frac{ x^4}{16} -5\)
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
Find the mean deviation about the mean for the data 38, 70, 48, 40, 42, 55, 63, 46, 54, 44.
The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is
