By using Binomial Theorem, the expression \((x+ \frac{1}{x})^6\) can be expanded as
\((x+ \frac{1}{x})^6\) = \(^6C_0 (x)^6 + ^6C_1(x)^5(\frac{1}{x}) + ^6C_2(x)^4(\frac{1}{x}) + ^6C_3(x)^3(\frac{1}{x})^3 + ^6C_4(x)^2(\frac{1}{x})^4 +\)\( ^6C_5(x)(\frac{1}{x})^5 + ^6C_6(\frac{1}{x})^6\)
=\(x^6 + 6(x)^5(\frac{1}{x}) + 15(x)^4(\frac{1}{x^2}) + 20(x)^3(\frac{1}{x^3}) + 15 (x)^2 (\frac{1}{x^4}) + 6(x)(\frac{1}{x^5}) + \frac{1}{ x^6}\)
=\(x^6 + 6x^4 + 15x^2 + 20+ \frac{15}{x^2} + \frac{6}{x^4} + \frac{1}{ x^6}\)
If a and b are distinct integers, prove that a - b is a factor of \(a^n - b^n\) , whenever n is a positive integer.
[Hint: write\( a ^n = (a - b + b)^n\) and expand]
Figures 9.20(a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of the two figures is incorrect ? Why ?