Expand each of the following, using suitable identities:
(i) (x + 2y + 4z) 2 (ii) (2x – y + z) 2 (iii) (–2x + 3y + 2z) 2
(iv) (3a – 7b – c) 2 (v) (–2x + 5y – 3z) 2 (vi) [ \(\frac{1 }{ 4}\) a - \(\frac{1 }{ 2}\) b + 1]2
It is known that,
(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
(i) (x + 2y + 4z)2 = x2 (2y)2 + (4z)2 + 2(x) (2y) + 2 (2y) (4z) + 2(4z)(x)
= x2 + 4y2 + 16z2 + 4xy + 16yz + 8xz
(ii) (2x – y + z) 2 = (2x)2 + (-y)2 + (z)2 + 2 (2x)(-y) + 2 (-y) (z) + 2 (z)(2x)
= 4x2 + y2 + z2 - 4xy - 2yz + 4xz
(iii) (–2x + 3y + 2z) 2 = (-2x)2 + (3y)2 + (2z)2 + 2(-2x)(3y) + 2(3y)(2z) + 2(2z)(-2x)
= 4x2 + 9y2 + 4z2 - 12xy + 12yz - 8xz
(iv) (–2x + 3y + 2z) 2 = (3a)2 + (-7b)2 + (-c)2 + 2(3a)(-7b) + 2(-7b)(-c) + 2(-c)(3a)
= 9a2 + 49b2 + c2 - 42ab + 14bc - 6ac
(v) (–2x + 5y – 3z) 2 = (-2x)2 + (5y)2 + (-3z)2 + 2(-2x)(5y) + 2(5y)(-3z) + 2(-3z)(-2x)
= 4x2 + 25y2 + 9z2 - 20xy - 30yz + 12xz
(vi) [\(\frac{1 }{ 4}\) a - \(\frac{1 }{ 2}\)2 b + 1]2 = (\(\frac{1 }{ 4}\) a)2 + (-\(\frac{1 }{ 2}\)b)2 + (1)2 + 2(\(\frac{1 }{ 4}\) a)(-\(\frac{1 }{ 2}\) b) + 2 (-\(\frac{1 }{ 2}\) b)(1) + 2 (\(\frac{1 }{ 4}\) a) (1)
= \(\frac{1 }{ 16}\) a2 + \(\frac{1 }{ 4}\) b2 + 1 - \(\frac{1 }{ 4}\) ab - b + \(\frac{1 }{ 2}\) a
Factorise each of the following:
(i) 8a 3 + b 3 + 12a 2b + 6ab2
(ii) 8a 3 – b 3 – 12a 2b + 6ab2
(iii) 27 – 125a 3 – 135a + 225a 2
(iv) 64a 3 – 27b 3 – 144a 2b + 108ab2
(v) 27p 3 – \(\frac{1}{ 216}\) – \(\frac{9 }{ 2}\) p2 + \(\frac{1 }{4}\) p
In Fig. 9.26, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠ BEC = 130° and ∠ ECD = 20°. Find ∠ BAC.
Look up the dictionary entries for the words sympathy, familiarity, comfort, care, and surprise. Use the information given in the dictionary and complete the table.
Noun, Adjective, Adverb, Verb, Meaning:
sympathy
familiarity
comfort
care
surprise