Examine the consistency of the system of equations.
x+2y=2,
2x+3y=3
The given system of equations is:
x + 2y = 2
2x + 3y = 3
The given system of equations can be written in the form of AX = B, where
A= \(\begin{bmatrix}1&2\\2&3\end{bmatrix}\),X=\(\begin{bmatrix}x\\y\end{bmatrix}\) and B=\(\begin{bmatrix}2\\3\end{bmatrix}\)
Now,
IAI=1(3)-2(2)=3-4=-1≠0
∴ A is non-singular.
Therefore, A-1 exists.
Hence, the given system of equations is consistent.
If $ A = \begin{pmatrix} 2 & 2 + p & 2 + p + q \\ 4 & 6 + 2p & 8 + 3p + 2q \\ 6 & 12 + 3p & 20 + 6p + 3q \end{pmatrix} $, then the value of $ \det(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n $, then $ m + n $ is equal to:
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
The Determinant of a square Matrix is a value ascertained by the elements of a Matrix. In the 2 × 2 Matrix.
The Determinants are calculated by
Det(a b)
The larger Matrices have more complex formulas.
Determinants have different applications throughout Mathematics. For example, they are used in shoelace formulas for calculating the area which is beneficial as a collinearity condition as three collinear points define a triangle that is equal to 0. The Determinant is also used in multiple variable calculi and in computing the cross product of vectors.
Read More: Determinant Formula
Second Method to find the determinant:
The second way to define a determinant is to express in terms of the columns of the matrix by expressing an n x n matrix in terms of the column vectors.
Consider the column vectors of matrix A as A = [ a1, a2, a3, …an] where any element aj is a vector of size x.
Then the determinant of matrix A is defined such that
Det [ a1 + a2 …. baj+cv … ax ] = b det (A) + c det [ a1+ a2 + … v … ax ]
Det [ a1 + a2 …. aj aj+1… ax ] = – det [ a1+ a2 + … aj+1 aj … ax ]
Det (I) = 1
Where the scalars are denoted by b and c, a vector of size x is denoted by v, and the identity matrix of size x is denoted by I.
We can infer from these equations that the determinant is a linear function of the columns. Further, we observe that the sign of the determinant can be interchanged by interchanging the position of adjacent columns. The identity matrix of the respective unit scalar is mapped by the alternating multi-linear function of the columns. This function is the determinant of the matrix.
Read More: Properties of Determinants