Question:

Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say some thing about the converse of Rolle’s Theorem from these examples?
\((i)f(x)=[x]\,for\, x∈[5,9]\)
\((ii)f(x)=[x]\,for\, x∈[-2,2]\)
\((iii)f(x)=[x^2]\,for\, x∈[1,2]\)

Updated On: Oct 11, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

By Rolle’s Theorem, for a function \(f:[a,b]→R\),if 
(a) \(f\) is continuous on \([a,b]\)
(b) \(f\) is differentiable on \((a,b)\)
(c) \(f(a)=f(b)\)
then, there exists some \(c∈(a, b)\) such that \(f'(c)=0\)
Therefore, Rolle’s Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis. 



\((i)f(x)=[x]\,for\, x∈[5,9]\)
It is evident that the given function \(f (x)\) is not continuous at every integral point. 
In particular, \(f(x)\) is not continuous at \(x=5\) and \(x=9\)
\(⇒ f(x)\) is not continuous in \([5,9]\)
Also,\(f(5)=[5]=5\) and \(f(9)=[9]=9\)
\(∴f(5)≠f(9)\)
The differentiability of \(f\) in \((5,9)\) is checked as follows.
Let \(n\) be an integer such that \(n∈(5,9).\)
The left hand limit of \(f\) at \(x=n\) is 
\(\underset{h→0}{lim}\frac{f(n+h)-f(n)}{h}=\underset{h→0}{lim}\frac{[n+h]-[n]}{h}\)
\(=\underset{h→0}{lim}\frac{n-1-n}{h}=\underset{h→0}{lim}\frac{-1}{h}=∞\)
The right hand limit of \(f\) at \(x=n\) is 
\(\underset{h→0}{lim}\frac{f(n+h)-f(n)}{h}=\underset{h→0}{lim}\frac{[n+h]-[n]}{h}\)
\(=\underset{h→0}{lim}\frac{n-n}{h}=\underset{h→0}{lim}\,0=0\)
Since the left and right hand limits of f at \(x = n\) are not equal, \(f\) is not differentiable at \(x=n\)
\(∴f\) is not differentiable in \((5,9)\). It is observed that \(f\) does not satisfy all the conditions of the hypothesis of Rolle’s Theorem. 
Hence, Rolle’s Theorem is not applicable for \(f(x)=[x]\, for\, x∈[5,9]\)



\((ii)f(x)=[x]\, for\, x∈[-2,2]\)
It is evident that the given function \(f (x)\) is not continuous at every integral point. 
In particular, \(f(x)\) is not continuous at \(x=−2\) and \(x=2\)
\(⇒ f(x)\) is not continuous in \([−2,2]\)
Also,\(f(-2)=[-2]=-2\) and \(f(2)=[2]=2\)
∴f(-2)≠f(2)
The differentiability of f in \((−2,2)\) is checked as follows.
Let \(n\) be an integer such that \(n ∈ (−2,2).\)
The left hand limit of \(f\) at \(x=n\) is 
\(\underset{h→0}{lim}\frac{f(n+h)-f(n)}{h}=\underset{h→0}{lim}\frac{[n+h]-[n]}{h}\)
\(=\underset{h→0}{lim}\frac{n-1-n}{h}=\underset{h→0}{lim}\frac{-1}{h}=∞\)
The right hand limit of \(f\) at \(x=n\) is 
\(\underset{h→0}{lim}\frac{f(n+h)-f(n)}{h}=\underset{h→0}{lim}\frac{[n+h]-[n]}{h}\)
\(=\underset{h→0}{lim}\frac{n-n}{h}=\underset{h→0}{lim}\,0=0\)
Since the left and right hand limits of \(f\) at \(x=n\) are not equal, \(f\) is not differentiable at \(x=n\) 
\(∴f\) is not differentiable in \((−2,2)\). It is observed that \(f\) does not satisfy all the conditions of the hypothesis of Rolle’s Theorem.
Hence, Rolle’s Theorem is not applicable for \(f(x)=[x]\, for\, x∈[-2,2]\)



\((iii) f(x)=x^2-1 \,for\, x∈[1,2]\)
It is evident that \(f\), being a polynomial function, is continuous in \([1, 2]\) and is differentiable in \((1, 2).\)
\(f(1)=(1)2-1=0\)
\(f(2)=(2)2-1=3\)
\(∴f(1)≠f(2)\)
It is observed that \(f\) does not satisfy a condition of the hypothesis of Rolle’s Theorem
Hence, Rolle’s Theorem is not applicable for \(f(x)=x^2-1\, for\, x∈[1,2]\)

Was this answer helpful?
0
0

Top Questions on Continuity and differentiability

View More Questions

Concepts Used:

Mean Value Theorem

The theorem states that for a curve f(x) passing through two given points (a, f(a)), (b, f(b)), there is at least one point (c, f(c)) on the curve where the tangent is parallel to the secant passing via the two given points is the mean value theorem.

The mean value theorem is derived herein calculus for a function f(x): [a, b] → R, such that the function is continuous and differentiable across an interval.

  • The function f(x) = continuous across the interval [a, b].
  • The function f(x) = differentiable across the interval (a, b).
  • A point c exists in (a, b) such that f'(c) = [ f(b) - f(a) ] / (b - a)