Step 1: Identify the form. As \(x\to 0\), numerator \(\to 0\) and denominator \(\to 0\) \(\Rightarrow\) \(0/0\) indeterminate.
Step 2: Multiply by the conjugate. \[ \frac{\sqrt{1+x}-1}{x}\cdot\frac{\sqrt{1+x}+1}{\sqrt{1+x}+1} =\frac{(1+x)-1}{x\big(\sqrt{1+x}+1\big)} =\frac{x}{x\big(\sqrt{1+x}+1\big)}. \]
Step 3: Cancel \(x\) (for \(x\neq 0\); the limit then follows by continuity).
\[
=\frac{1}{\sqrt{1+x}+1}\xrightarrow[x\to 0]{}\frac{1}{1+1}=\frac{1}{2}.
\]
Method 2 (Derivative viewpoint — limit definition).
Let \(f(t)=\sqrt{t}\). Then
\[
\frac{\sqrt{1+x}-1}{x}
=\frac{f(1+x)-f(1)}{x}
=\frac{f(1+x)-f(1)}{(1+x)-1}
\xrightarrow[x\to 0]{} f'(1).
\]
Since \(f'(t)=\dfrac{1}{2\sqrt{t}}\), we get \(f'(1)=\dfrac{1}{2}\).
Method 3 (Series expansion — binomial).
For \(|x|<1\),
\[
\sqrt{1+x}=1+\frac{x}{2}-\frac{x^2}{8}+\frac{x^3}{16}-\cdots.
\]
Hence
\[
\frac{\sqrt{1+x}-1}{x}=\frac{\frac{x}{2}-\frac{x^2}{8}+\cdots}{x}
=\frac{1}{2}-\frac{x}{8}+\cdots \xrightarrow[x\to 0]{}\frac{1}{2}.
\]
Domain note. The expression is defined for \(x>-1\) (so that \(1+x\ge 0\)), which includes a deleted neighborhood of \(0\); therefore the limit process is valid.
Final Answer:
\[
\boxed{\tfrac{1}{2}}
\]
Ravi had _________ younger brother who taught at _________ university. He was widely regarded as _________ honorable man.
Select the option with the correct sequence of articles to fill in the blanks.