Step 1: Identify the integral and choose method
Given integral:
\[
\int x^3 (\log x)^2 \, dx
\]
Use integration by parts, let:
\[
u = (\log x)^2, \quad dv = x^3 dx
\]
Step 2: Compute derivatives and integrals
\[
du = 2 \log x \cdot \frac{1}{x} dx = \frac{2 \log x}{x} dx
\]
\[
v = \frac{x^4}{4}
\]
Step 3: Apply integration by parts formula
\[
\int u \, dv = uv - \int v \, du
\]
\[
= \frac{x^4}{4} (\log x)^2 - \int \frac{x^4}{4} \cdot \frac{2 \log x}{x} dx
\]
\[
= \frac{x^4}{4} (\log x)^2 - \frac{1}{2} \int x^3 \log x \, dx
\]
Step 4: Evaluate remaining integral \(\int x^3 \log x \, dx\) using integration by parts again
Let:
\[
u = \log x, \quad dv = x^3 dx
\]
\[
du = \frac{1}{x} dx, \quad v = \frac{x^4}{4}
\]
Then:
\[
\int x^3 \log x \, dx = \frac{x^4}{4} \log x - \int \frac{x^4}{4} \cdot \frac{1}{x} dx = \frac{x^4}{4} \log x - \frac{1}{4} \int x^3 dx
\]
\[
= \frac{x^4}{4} \log x - \frac{1}{4} \cdot \frac{x^4}{4} + C = \frac{x^4}{4} \log x - \frac{x^4}{16} + C
\]
Step 5: Substitute back into main integral
\[
\int x^3 (\log x)^2 dx = \frac{x^4}{4} (\log x)^2 - \frac{1}{2} \left[ \frac{x^4}{4} \log x - \frac{x^4}{16} \right] + C
\]
\[
= \frac{x^4}{4} (\log x)^2 + \frac{1}{2} \left[ x^4 \log x - \frac{x^4}{4} \right] + C
\]
\[
= \frac{x^4}{4} (\log x)^2 + \frac{1}{2} x^4 \log x - \frac{x^4}{8} + C
\]
Final answer:
\[
\boxed{ \frac{(\log x)^2 x^4}{4} + \frac{1}{2} \left[ (\log x) x^4 - \frac{x^4}{16} \right] + C }
\]