To solve the integral \( \int x^3 (\log x)^2 dx \), we use integration by parts. Let:
\[
u = (\log x)^2 \quad \text{and} \quad dv = x^3 dx
\]
Then, \( du = \frac{2 \log x}{x} dx \) and \( v = \frac{x^4}{4} \).
Now apply the integration by parts formula:
\[
\int u dv = uv - \int v du
\]
Substitute the values of \( u \), \( du \), \( v \), and \( dv \), and integrate the resulting expression.
After integrating, we obtain:
\[
\frac{(\log x)^2 x^4}{4} + \frac{1}{2} \left[ (\log x) x^4 - \frac{x^4}{16} \right] + C
\]
Thus, the correct answer is option (1).