Using trigonometric identities to rewrite the given function:
\[
\operatorname{Cos}^{-1} \left( \frac{1-x^2}{1+x^2} \right) = 2\operatorname{Tan}^{-1} x
\]
Thus, the integral reduces to:
\[
\int 2\operatorname{Tan}^{-1} x dx
\]
Applying integration by parts:
\[
2[x\operatorname{Tan}^{-1} x - \log \sqrt{1 + x^2}] + C
\]
Thus, the correct answer is:
\[
2[x\operatorname{Tan}^{-1}x-\log\sqrt{1+x^2}] + C
\]