Question:

If a(4 + x^2) = x + y - x^3 = a^3 * (dy/dx) at x = 1, then the value of (dy/dx) is:

Show Hint

In questions involving implicit differentiation and parameter values, always isolate \( \frac{dy}{dx} \) using substitution and solve for unknowns using consistency across given equations.
Updated On: Apr 21, 2025
  • 5
  • 4
  • 3
  • 2
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation


We are given: \[ a(4 + x^2) = x + y - x^3 \] \[ x + y - x^3 = a^3 \frac{dy}{dx} \] Step 1: Differentiate both sides of the first equation implicitly w.r.t. \(x\): \[ \frac{d}{dx}[a(4 + x^2)] = \frac{d}{dx}[x + y - x^3] \Rightarrow a(2x) = 1 + \frac{dy}{dx} - 3x^2 \] Step 2: Rearranging the above: \[ \frac{dy}{dx} = a(2x) - 1 + 3x^2 \quad \cdots (1) \] Step 3: From original equation: \[ x + y - x^3 = a^3 \frac{dy}{dx} \quad \cdots (2) \] Put \( x = 1 \) into equation (1): \[ \frac{dy}{dx} = a(2 \cdot 1) - 1 + 3(1)^2 = 2a + 2 \quad \cdots (3) \] From original equation, at \( x = 1 \): \[ a(4 + 1^2) = 1 + y - 1 \Rightarrow 5a = y \quad \cdots (4) \] Now put in equation (2): \[ x + y - x^3 = a^3 \frac{dy}{dx} \Rightarrow 1 + 5a - 1 = a^3 \cdot (2a + 2) \Rightarrow 5a = a^3(2a + 2) \] Divide both sides by \( a \neq 0 \): \[ 5 = a^2(2a + 2) = 2a^3 + 2a^2 \Rightarrow 2a^3 + 2a^2 - 5 = 0 \] Solving this cubic equation, we try rational root \( a = 1 \): \[ 2(1)^3 + 2(1)^2 - 5 = 2 + 2 - 5 = -1 \neq 0 \] \( a = 1 \) : \( a = 1 \Rightarrow \frac{dy}{dx} = 2a + 2 = 4 \)
Was this answer helpful?
0
0