>
Exams
>
Mathematics
>
Integration
>
evaluate the integral int frac sin 1 sqrt x cos 1
Question:
Evaluate the integral \[ \int \frac{\sin^{-1} \sqrt{x} - \cos^{-1} \sqrt{x}}{\sqrt{x} \left( \sin^{-1} \sqrt{x} + \cos^{-1} \sqrt{x} \right)} \, dx \]
Show Hint
Use inverse trigonometric identities like \(\cos^{-1} \theta = \frac{\pi}{2} - \sin^{-1} \theta\) to simplify integrals.
AP EAPCET - 2023
AP EAPCET
Updated On:
May 15, 2025
\(\dfrac{2}{\pi} \left[ \sin^{-1} \sqrt{x(2x - 1)} + \sqrt{x(1 - x)} \right] + x + C\)
\(\dfrac{8}{\pi} \left( \sqrt{x} \sin^{-1} \sqrt{x} - \sqrt{x(1 - x)} \right) - 2\sqrt{x} + C\)
\(\dfrac{2}{\pi} \left[ (2x - 1)\sin^{-1} \sqrt{x} - \sqrt{x(1 - x)} \right] - x + C\)
\(\dfrac{2}{\pi} \left[ (2x - 1)\sin^{-1} \sqrt{x} - \sqrt{x(1 - x)} \right] + x + C\)
Hide Solution
Verified By Collegedunia
The Correct Option is
B
Solution and Explanation
We use the identity \(\cos^{-1} \theta = \frac{\pi}{2} - \sin^{-1} \theta\). Substituting in the integrand: \[ \frac{\sin^{-1} \sqrt{x} - \left(\frac{\pi}{2} - \sin^{-1} \sqrt{x}\right)}{\sqrt{x} \left( \sin^{-1} \sqrt{x} + \frac{\pi}{2} - \sin^{-1} \sqrt{x} \right)} = \frac{2\sin^{-1} \sqrt{x} - \frac{\pi}{2}}{\sqrt{x} \cdot \frac{\pi}{2}} \] Then integrate the simplified expression: \[ \int \left( \frac{4}{\pi} \cdot \frac{\sin^{-1} \sqrt{x}}{\sqrt{x}} - \frac{2}{\pi\sqrt{x}} \right) dx \] Using the standard result: \[ \int \frac{\sin^{-1} \sqrt{x}}{\sqrt{x}} dx = \frac{\pi}{4} \left( \frac{8}{\pi} \left( \sqrt{x} \sin^{-1} \sqrt{x} - \sqrt{x(1 - x)} \right) \right) \] and \[ \int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} \] Putting all together, we get the answer as: \[ \frac{8}{\pi} \left( \sqrt{x} \sin^{-1} \sqrt{x} - \sqrt{x(1 - x)} \right) - 2\sqrt{x} + C \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Integration
Evaluate
\( \int_0^{\frac{\pi}{2}} \frac{x}{\cos x + \sin x} \, dx \)
CBSE CLASS XII - 2025
Mathematics
Integration
View Solution
Evaluate :
\[ I = \int_0^{\frac{\pi}{4}} \frac{dx}{\cos^3 x \sqrt{2 \sin 2x}} \]
CBSE CLASS XII - 2025
Mathematics
Integration
View Solution
Find:
\[ \int \frac{\sqrt{x}}{1 + \sqrt{x^{3/2}}} \, dx \]
CBSE CLASS XII - 2025
Mathematics
Integration
View Solution
Evaluate the integral:
\[ \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx \]
MHT CET - 2025
Mathematics
Integration
View Solution
$ \int \frac{e^{10 \log x} - e^{8 \log x}}{e^{6 \log x} - e^{5 \log x}} \, dx$ is equal to :
CBSE CLASS XII - 2025
Mathematics
Integration
View Solution
View More Questions
Questions Asked in AP EAPCET exam
The number of all five-letter words (with or without meaning) having at least one repeated letter that can be formed by using the letters of the word INCONVENIENCE is:
AP EAPCET - 2025
Binomial Expansion
View Solution
If \(\alpha, \beta, \gamma\) are the roots of the equation \[ x^3 - 13x^2 + kx + 189 = 0 \] such that \(\beta - \gamma = 2\), then find the ratio \(\beta + \gamma : k + \alpha\).
AP EAPCET - 2025
Algebra
View Solution
In a container of volume 16.62 m$^3$ at 0°C temperature, 2 moles of oxygen, 5 moles of nitrogen and 3 moles of hydrogen are present, then the pressure in the container is (Universal gas constant = 8.31 J/mol K)
AP EAPCET - 2025
Ideal gas equation
View Solution
If
\[ A = \begin{bmatrix} x & 2 & 1 \\ -2 & y & 0 \\ 2 & 0 & -1 \end{bmatrix}, \] where \( x \) and \( y \) are non-zero real numbers, trace of \( A = 0 \), and determinant of \( A = -6 \), then the minor of the element 1 of \( A \) is:}
AP EAPCET - 2025
Complex numbers
View Solution
Two objects of masses 5 kg and 10 kg are placed 2 meters apart. What is the gravitational force between them?
(Use \(G = 6.67 \times 10^{-11}\, \mathrm{Nm^2/kg^2}\))
AP EAPCET - 2025
Gravitation
View Solution
View More Questions