To evaluate the integral \(\int \frac{e^x \left( 2 + \sin(2x) \right)}{1 + \cos(2x)} \, dx\), we start by simplifying the expression. Use the identity \(1 + \cos(2x) = 2\cos^2(x)\). Thus, the integral becomes:
$$\int \frac{e^x \left( 2 + \sin(2x) \right)}{2\cos^2(x)} \, dx$$
Split the integral:
$$\int \frac{2e^x}{2\cos^2(x)} \, dx + \int \frac{e^x \sin(2x)}{2\cos^2(x)} \, dx$$
Simplifying the first term gives:
$$\int \frac{e^x}{\cos^2(x)} \, dx = \int e^x \sec^2(x) \, dx$$
For the second term, use the identity \(\sin(2x) = 2\sin(x)\cos(x)\), yielding:
$$\int \frac{2e^x \sin(x)\cos(x)}{2\cos^2(x)} \, dx = \int \frac{e^x \sin(x)}{\cos(x)} \, dx = \int e^x \tan(x) \, dx$$
The integral now simplifies to:
$$\int e^x \sec^2(x) \, dx + \int e^x \tan(x) \, dx$$
We solve these using substitution. Let \(u = e^x \tan(x)\). Then, using derivatives \(du = e^x \sec^2(x) \, dx + e^x \tan(x) \, dx\), the integral thus becomes:
$$\int du = u + C = e^x \tan(x) + C$$
Therefore, the evaluated integral is \(e^x \tan x + C\).