We are asked to evaluate the integral:
\[
I = \int \frac{\cos 4x + 1}{\cot x - \tan x} \, dx
\]
Step 1: Simplify the denominator
The denominator is \( \cot x - \tan x \). Using trigonometric identities, we know:
\[
\cot x = \frac{\cos x}{\sin x} \quad \text{and} \quad \tan x = \frac{\sin x}{\cos x}
\]
Therefore:
\[
\cot x - \tan x = \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x}
\]
To simplify this expression, we find a common denominator:
\[
\cot x - \tan x = \frac{\cos^2 x - \sin^2 x}{\sin x \cos x}
\]
We can now express the denominator as:
\[
\cot x - \tan x = \frac{\cos 2x}{\sin x \cos x}
\]
Step 2: Substitute and integrate
Now, the integral becomes:
\[
I = \int \frac{\cos 4x + 1}{\frac{\cos 2x}{\sin x \cos x}} \, dx
\]
Simplifying the expression inside the integral:
\[
I = \int (\cos 4x + 1) \frac{\sin x \cos x}{\cos 2x} \, dx
\]
Now, using standard integration techniques and applying trigonometric identities, we can find the integral. After solving, the correct result is:
\[
I = -\frac{1}{8} \cos 4x + c
\]
Thus, the correct answer is \( \boxed{-\frac{1}{8} \cos 4x + c} \).