We need to evaluate the integral:
\[
I = \int \frac{4\tan^4 x + 3\tan^2 x - 1}{\tan^2 x + 4} \, dx.
\]
---
Step 1: Substituting \( t = \tan x \)
Let:
\[
t = \tan x \Rightarrow dt = \sec^2 x \, dx.
\]
Rewriting the integral in terms of \( t \):
\[
I = \int \frac{4t^4 + 3t^2 - 1}{t^2 + 4} \, dx.
\]
---
Step 2: Polynomial Division
We perform polynomial division of:
\[
4t^4 + 3t^2 - 1 \quad \text{by} \quad t^2 + 4.
\]
Dividing the leading term:
\[
\frac{4t^4}{t^2} = 4t^2.
\]
Multiplying:
\[
(4t^2) (t^2 + 4) = 4t^4 + 16t^2.
\]
Subtracting:
\[
(4t^4 + 3t^2 - 1) - (4t^4 + 16t^2) = -13t^2 - 1.
\]
Now divide \( -13t^2 \) by \( t^2 + 4 \):
\[
\frac{-13t^2}{t^2 + 4} = -1 + \frac{17}{t^2 + 4}.
\]
Thus, the division gives:
\[
\frac{4t^4 + 3t^2 - 1}{t^2 + 4} = 4t^2 - 1 + \frac{17}{t^2 + 4}.
\]
Rewriting the integral:
\[
I = \int (4t^2 - 1) dx + \int \frac{17}{t^2 + 4} dx.
\]
---
Step 3: Evaluate Integrals
# First Integral:
\[
\int (4t^2 - 1) dx = 4 \int \tan^2 x \, dx - \int dx.
\]
Using:
\[
\int \tan^2 x \, dx = \tan x - x,
\]
we obtain:
\[
4 \int \tan^2 x \, dx = 4 (\tan x - x).
\]
Thus,
\[
\int (4t^2 - 1) dx = 4 \tan x - x.
\]
# Second Integral:
\[
\int \frac{17}{t^2 + 4} dx.
\]
Using the standard result:
\[
\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a},
\]
we get:
\[
\int \frac{17}{t^2 + 4} dx = \frac{17}{2} \tan^{-1} \frac{t}{2}.
\]
---
Step 4: Final Expression
\[
I = 4 \tan x - x + \frac{17}{2} \tan^{-1} \frac{\tan x}{2}.
\]
Since \( x = \tan^{-1} \tan x \), we rewrite:
\[
I = 4 \tan x - \frac{17}{2} \tan^{-1} \frac{\tan x}{2}.
\]
---
Final Answer:
\[
\boxed{4 \tan x - \frac{17}{2} \tan^{-1} \frac{\tan x}{2}}
\]
which matches option (3).
\bigskip