Question:

Evaluate the integral: \[ \int \frac{3x^9 + 7x^8}{(x^2 + 2x + 5x^9)^2} \,dx= \] 

Show Hint

When integrating rational functions, try using substitution to simplify the denominator and express the numerator in terms of the derivative of the denominator.
Updated On: Mar 25, 2025
  • \( \frac{x^7}{5x^7 + x + 2} + C \)
  • \( \frac{-x^7}{2(5x^7 + x + 2)} + C \)
  • \( \frac{1}{2(5x^7 + x + 2)} + C \)
  • \( \frac{-x^7}{2(5x^7 + x + 2)} + C \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Substituting \( u \)
Let: \[ u = x^2 + 2x + 5x^9. \] Differentiating both sides: \[ du = (2x + 2 + 45x^8) dx = (2(x+1) + 45x^8) dx. \] Rewriting the given integral: \[ I = \int \frac{3x^9 + 7x^8}{u^2} \,dx. \] Step 2: Simplifying the Integral
Since \( 3x^9 + 7x^8 \) is part of \( du \), we express the integral as: \[ I = \int \frac{-x^7}{2u} \,du. \] Using the standard integral formula: \[ \int \frac{du}{u^2} = -\frac{1}{u}. \] Step 3: Evaluating the Integral
Substituting \( u = 5x^7 + x + 2 \), we get: \[ I = \frac{-x^7}{2(5x^7 + x + 2)} + C. \] Final Answer: \( \boxed{\frac{-x^7}{2(5x^7 + x + 2)} + C} \).
Was this answer helpful?
0
0