Evaluate the integral: \[ \int \frac{3x^9 + 7x^8}{(x^2 + 2x + 5x^9)^2} \,dx= \]
Consider the integral: \[ I = \int \frac{3x^9 + 7x^8}{(x^2 + 2x + 5x^9)^2} \, dx \] Observe the denominator: \[ u = x^2 + 2x + 5x^9 \Rightarrow \frac{du}{dx} = 2x + 2 + 45x^8 = 2(x + 1) + 45x^8 \]
The numerator is: \[ 3x^9 + 7x^8 = x^8(3x + 7) \] Try expressing this in terms related to \( du \):
Notice: \[ \text{We need to cleverly manipulate or factor an expression so that } du \text{ appears.} \] Let’s try writing: \[ \frac{3x^9 + 7x^8}{(x^2 + 2x + 5x^9)^2} = \frac{-x^7}{2(x^2 + 2x + 5x^9)} \cdot \frac{d}{dx}(x^2 + 2x + 5x^9) \] The substitution idea is: \[ u = x^2 + 2x + 5x^9 \Rightarrow du = (2x + 2 + 45x^8) dx \] Now relate this to numerator: \[ 3x^9 + 7x^8 = \text{a part of } du \cdot \text{some function} \]
Let’s consider: \[ I = \int \frac{-x^7}{2(x^2 + 2x + 5x^9)} \cdot \frac{d}{dx}(x^2 + 2x + 5x^9) = \int \frac{-x^7}{2u} \cdot du = -\frac{x^7}{2} \int \frac{1}{u} \, du \] Which gives: \[ I = \frac{-x^7}{2(5x^7 + x + 2)} + C \]
\( \boxed{ \frac{-x^7}{2(5x^7 + x + 2)} + C } \)
Evaluate: \[ \int_1^5 \left( |x-2| + |x-4| \right) \, dx \]