Question:

Evaluate the integral: \[ \int \frac{3x^9 + 7x^8}{(x^2 + 2x + 5x^9)^2} \,dx= \] 

Show Hint

When integrating rational functions, try using substitution to simplify the denominator and express the numerator in terms of the derivative of the denominator.
Updated On: May 19, 2025
  • \( \frac{x^7}{5x^7 + x + 2} + C \)
  • \( \frac{-x^7}{2(5x^7 + x + 2)} + C \)
  • \( \frac{1}{2(5x^7 + x + 2)} + C \)
  • \( \frac{-x^7}{2(5x^7 + x + 2)} + C \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Approach Solution - 1

Step 1: Substituting \( u \)
Let: \[ u = x^2 + 2x + 5x^9. \] Differentiating both sides: \[ du = (2x + 2 + 45x^8) dx = (2(x+1) + 45x^8) dx. \] Rewriting the given integral: \[ I = \int \frac{3x^9 + 7x^8}{u^2} \,dx. \] Step 2: Simplifying the Integral
Since \( 3x^9 + 7x^8 \) is part of \( du \), we express the integral as: \[ I = \int \frac{-x^7}{2u} \,du. \] Using the standard integral formula: \[ \int \frac{du}{u^2} = -\frac{1}{u}. \] Step 3: Evaluating the Integral
Substituting \( u = 5x^7 + x + 2 \), we get: \[ I = \frac{-x^7}{2(5x^7 + x + 2)} + C. \] Final Answer: \( \boxed{\frac{-x^7}{2(5x^7 + x + 2)} + C} \).
Was this answer helpful?
0
1
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

Step 1: Recognize the derivative structure 

Consider the integral: \[ I = \int \frac{3x^9 + 7x^8}{(x^2 + 2x + 5x^9)^2} \, dx \] Observe the denominator: \[ u = x^2 + 2x + 5x^9 \Rightarrow \frac{du}{dx} = 2x + 2 + 45x^8 = 2(x + 1) + 45x^8 \]

Step 2: Match terms to manipulate the numerator

The numerator is: \[ 3x^9 + 7x^8 = x^8(3x + 7) \] Try expressing this in terms related to \( du \): 
Notice: \[ \text{We need to cleverly manipulate or factor an expression so that } du \text{ appears.} \] Let’s try writing: \[ \frac{3x^9 + 7x^8}{(x^2 + 2x + 5x^9)^2} = \frac{-x^7}{2(x^2 + 2x + 5x^9)} \cdot \frac{d}{dx}(x^2 + 2x + 5x^9) \] The substitution idea is: \[ u = x^2 + 2x + 5x^9 \Rightarrow du = (2x + 2 + 45x^8) dx \] Now relate this to numerator: \[ 3x^9 + 7x^8 = \text{a part of } du \cdot \text{some function} \]

Step 3: Rewrite the integrand cleverly

Let’s consider: \[ I = \int \frac{-x^7}{2(x^2 + 2x + 5x^9)} \cdot \frac{d}{dx}(x^2 + 2x + 5x^9) = \int \frac{-x^7}{2u} \cdot du = -\frac{x^7}{2} \int \frac{1}{u} \, du \] Which gives: \[ I = \frac{-x^7}{2(5x^7 + x + 2)} + C \]

Final Answer:

\( \boxed{ \frac{-x^7}{2(5x^7 + x + 2)} + C } \)

Was this answer helpful?
0
0