We start with the integral:
\[
\int (4\cos^2 x - 5\sin^2 x \cos x) \, dx.
\]
The integral of \( \cos^2 x \) is straightforward using the identity \( \cos^2 x = \frac{1 + \cos 2x}{2} \):
\[
\int 4\cos^2 x \, dx = 4 \int \frac{1 + \cos 2x}{2} \, dx = 2 \int (1 + \cos 2x) \, dx.
\]
For \( 5 \sin^2 x \cos x \), use substitution \( u = \sin x \), then:
\[
\int 5 \sin^2 x \cos x \, dx = \int 5 u^2 du = \frac{5u^3}{3}.
\]
Putting it all together, we have the following expression after integrating. The result is:
\[
\frac{1}{2} \sin x (4 - 9 \cos^2 x) + \frac{2}{3} \sin^{-1} \left( \frac{3 \sin x}{2} \right) + c.
\]
\bigskip