Step 1: Simplify the integrand.
The denominator can be factorized as
\[
\cos^3 x + \cos x = \cos x(\cos^2 x + 1)
\]
Thus, the integrand becomes
\[
\frac{x \cos x \sin x}{\cos x(\cos^2 x + 1)} = \frac{x \sin x}{1 + \cos^2 x}
\]
Step 2: Use symmetry property.
Let
\[
I = \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x}\,dx
\]
Replace \(x\) by \(\pi - x\):
\[
I = \int_{0}^{\pi} \frac{(\pi - x)\sin x}{1 + \cos^2 x}\,dx
\]
Step 3: Add the two integrals.
\[
2I = \pi \int_{0}^{\pi} \frac{\sin x}{1 + \cos^2 x}\,dx
\]
Step 4: Evaluate the remaining integral.
Let \(u = \cos x\), then \(du = -\sin x\,dx\).
\[
\int_{0}^{\pi} \frac{\sin x}{1 + \cos^2 x}\,dx
= \int_{1}^{-1} \frac{-du}{1 + u^2}
= \int_{-1}^{1} \frac{du}{1 + u^2}
= \left[\tan^{-1}u\right]_{-1}^{1}
= \frac{\pi}{2}
\]
Step 5: Final calculation.
\[
2I = \pi \cdot \frac{\pi}{2} = \frac{\pi^2}{2}
\Rightarrow I = \frac{\pi^2}{4}
\]