Step 1: Use substitution
Let \( t = \sqrt{x} \), so that \( x = t^2 \) and \( dx = 2t dt \).
Rewriting the integral:
\[
I = \int_0^4 \frac{t}{1+t} \cdot 2t dt.
\]
\[
= 2 \int_0^4 \frac{t^2}{1+t} dt.
\]
Step 2: Split and integrate
\[
I = 2 \int_0^4 (t - 1 + \frac{1}{1+t}) dt.
\]
Solving each term:
\[
I = 2 \left[ \frac{t^2}{2} - t + \log (1+t) \right] \Bigg|_0^4.
\]
Step 3: Compute the result
\[
I = 2 \left[ \left(\frac{16}{2} - 4 + \log 5 \right) - (0 - 0 + 0) \right].
\]
\[
= 2 \times (8 - 4 + \log 5) = 8 + 2\log 5.
\]
Thus, the correct answer is \( \boxed{8 + 2\log 5} \).