We need to evaluate the integral:
\[
I = \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \frac{\sin^4(4x)}{1 + e^{4x}} \, dx.
\]
---
Step 1: Apply Symmetry Property of Definite Integrals
We use the property:
\[
\int_{-a}^{a} f(x) \, dx = \int_{-a}^{a} f(-x) \, dx.
\]
Substituting \( x \to -x \) in the given integral:
\[
I = \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \frac{\sin^4(4(-x))}{1 + e^{4(-x)}} \, dx.
\]
Since \( \sin(-\theta) = -\sin \theta \), we get:
\[
\sin^4(4(-x)) = \sin^4(4x).
\]
Also, since \( e^{-4x} = \frac{1}{e^{4x}} \), we rewrite the denominator:
\[
1 + e^{-4x} = \frac{e^{4x} + 1}{e^{4x}}.
\]
Thus, the transformed integral is:
\[
I = \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \frac{\sin^4(4x)}{1 + e^{-4x}} \, dx
= \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \frac{\sin^4(4x) e^{4x}}{e^{4x} + 1} \, dx.
\]
Adding the original integral and the transformed integral:
\[
2I = \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \sin^4(4x) \, dx.
\]
Thus, we get:
\[
I = \frac{1}{2} \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \sin^4(4x) \, dx.
\]
---
Step 2: Solve the Integral \( \int \sin^4(4x) \, dx \)
Using the identity:
\[
\sin^4 A = \frac{3}{8} - \frac{1}{2} \cos 8A + \frac{1}{8} \cos 16A.
\]
\[
\int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \sin^4(4x) \, dx
= \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \left( \frac{3}{8} - \frac{1}{2} \cos 32x + \frac{1}{8} \cos 64x \right) dx.
\]
Since \( \int_{-a}^{a} \cos kx \, dx = 0 \), the integral simplifies to:
\[
\int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \frac{3}{8} dx.
\]
\[
= \frac{3}{8} \times \frac{\pi}{4} = \frac{3\pi}{32}.
\]
Thus,
\[
I = \frac{1}{2} \times \frac{3\pi}{32} = \frac{3\pi}{64}.
\]
---
Final Answer:
\[
\boxed{\frac{3\pi}{64}}
\]
which matches option (3).
\bigskip