Evaluate the integral: \[ I = \int \frac{\cos x + x \sin x}{x (x + \cos x)} dx =\]
Step 1: Observe the structure of the integrand
We are given: \[ I = \int \frac{\cos x + x \sin x}{x(x + \cos x)} \, dx \] Notice that the denominator is: \[ x(x + \cos x) \] And the numerator: \[ \cos x + x \sin x \] This resembles the derivative of the denominator. Let’s check.
Step 2: Let the denominator be \( u \)
Let: \[ u = x + \cos x \Rightarrow \frac{du}{dx} = 1 - \sin x \quad \text{(Not useful)} \] But try: \[ f(x) = \log \left| \frac{x}{x + \cos x} \right| \Rightarrow \frac{d}{dx} \left( \log \left| \frac{x}{x + \cos x} \right| \right) = \frac{d}{dx} \left( \log |x| - \log |x + \cos x| \right) \] Derivatives: \[ \frac{d}{dx}(\log |x|) = \frac{1}{x}, \quad \frac{d}{dx}(\log |x + \cos x|) = \frac{1 - \sin x}{x + \cos x} \] So: \[ \frac{d}{dx} \left( \log \left| \frac{x}{x + \cos x} \right| \right) = \frac{1}{x} - \frac{1 - \sin x}{x + \cos x} \] Now make common denominator: \[ = \frac{(x + \cos x) - x(1 - \sin x)}{x(x + \cos x)} = \frac{x + \cos x - x + x \sin x}{x(x + \cos x)} = \frac{\cos x + x \sin x}{x(x + \cos x)} \] Which matches the given integrand.
Therefore, \[ \int \frac{\cos x + x \sin x}{x (x + \cos x)} \, dx = \log \left| \frac{x}{x + \cos x} \right| + C \]
\( \boxed{ \log \left| \frac{x}{x + \cos x} \right| + C } \)
The integral $ \int_0^1 \frac{1}{2 + \sqrt{2e}} \, dx $ is:
Find the area of the region (in square units) enclosed by the curves: \[ y^2 = 8(x+2), \quad y^2 = 4(1-x) \] and the Y-axis.
The general solution of the differential equation \[ (x + y)y \,dx + (y - x)x \,dy = 0 \] is:
Evaluate the integral: \[ \int \frac{2x^2 - 3}{(x^2 - 4)(x^2 + 1)} \,dx = A \tan^{-1} x + B \log(x - 2) + C \log(x + 2) \] Given that, \[ 64A + 7B - 5C = ? \]
If \( x, y \) are two positive integers such that \( x + y = 20 \) and the maximum value of \( x^3 y \) is \( k \) at \( x = a, y = \beta \), then \( \frac{k}{\alpha^2 \beta^2} = ? \)