Step 1: Consider the standard transformation property.
Using the transformation property of definite integrals:
\[
\int_{a}^{b} f(x) \,dx = \int_{a}^{b} f(a+b-x) \,dx
\]
Let:
\[
J = \int_{\frac{-3\pi}{4}}^{\frac{\pi}{6}} \log(\sin(4x+3)) \,dx
\]
Using the transformation \( x \to a+b-x \), we replace \( x \) with \( -x \):
\[
J = \int_{\frac{-3\pi}{4}}^{\frac{\pi}{6}} \log(\sin(4(-x)+3)) \,dx
\]
Using the identity:
\[
\sin(\pi - \theta) = \sin\theta
\]
we get:
\[
\log(\sin(4x+3)) + \log(\sin(4(-x)+3)) = \log(\sin(4x+3)) + \log(\cos(4x+3))
\]
Thus, we use the integral identity:
\[
I + I = \int_{\frac{-3\pi}{4}}^{\frac{\pi}{6}} \log(\sin(4x+3)) \log(\cos(4x+3)) \,dx
\]
Using the result:
\[
\int_{0}^{\pi} \log \sin x \,dx = -\frac{\pi}{2} \log 2
\]
We get:
\[
J = -\frac{\pi}{8} \log 2
\]
Thus, the correct answer is:
\[
\boxed{-\frac{\pi}{8} \log 2}
\]