Step 1: Using the standard trigonometric identity.
We use the identity:
\[
1 - \cos 4x = 2\sin^2 2x
\]
Thus, the given integral transforms as:
\[
I = \int_{0}^{32\pi} \sqrt{2\sin^2 2x} \,dx
\]
\[
I = \sqrt{2} \int_{0}^{32\pi} |\sin 2x| \,dx
\]
Step 2: Evaluating the absolute value integral.
Since \(\sin 2x\) is a periodic function with period \(\pi\), we break it into intervals where \(\sin 2x\) is positive and negative.
The function \(\sin 2x\) completes one full cycle in the interval \( [0, \pi] \) and repeats.
Since the total integration range is \( 32\pi \), we have:
\[
\frac{32\pi}{\pi} = 32 \text{ complete cycles.}
\]
Each complete cycle contributes:
\[
\int_{0}^{\pi} |\sin 2x| \,dx = 2
\]
Thus, the total integral is:
\[
I = \sqrt{2} \times (32 \times 2) = 64\sqrt{2}
\]
Final Answer:
\[
\boxed{64\sqrt{2}}
\]