We use the property of definite integrals:
\[
\int_0^a f(x)\,dx = \int_0^a f(a-x)\,dx
\]
Let \( I = \int_0^{\frac{\pi}{2}} \log(\tan x + \cot x)\,dx \)
Then using the property:
\[
I = \int_0^{\frac{\pi}{2}} \log(\tan(\frac{\pi}{2} - x) + \cot(\frac{\pi}{2} - x))\, dx = \int_0^{\frac{\pi}{2}} \log(\cot x + \tan x)\, dx = I
\]
So adding both,
\[
2I = \int_0^{\frac{\pi}{2}} \left[\log(\tan x + \cot x) + \log(\cot x + \tan x)\right]\, dx = 2 \int_0^{\frac{\pi}{2}} \log(\tan x + \cot x)\, dx
\]
Let’s substitute \( \tan x + \cot x = \dfrac{\sin x}{\cos x} + \dfrac{\cos x}{\sin x} = \dfrac{\sin^2 x + \cos^2 x}{\sin x \cos x} = \dfrac{1}{\sin x \cos x} \)
So,
\[
I = \int_0^{\frac{\pi}{2}} \log\left(\frac{1}{\sin x \cos x}\right)\, dx = -\int_0^{\frac{\pi}{2}} \log(\sin x \cos x)\, dx
\]
\[
= -\int_0^{\frac{\pi}{2}} \log\left(\frac{1}{2} \sin 2x\right)\, dx = -\int_0^{\frac{\pi}{2}} \log\left(\frac{1}{2}\right)\, dx - \int_0^{\frac{\pi}{2}} \log(\sin 2x)\, dx
\]
\[
= \left(\frac{\pi}{2} \log 2 \right) - \frac{1}{2} \int_0^{\pi} \log(\sin u)\, du = \left(\frac{\pi}{2} \log 2\right) - \frac{1}{2}(-\pi \log 2)
\]
\[
= \left(\frac{\pi}{2} \log 2\right) + \left(\frac{\pi}{2} \log 2\right) = \pi \log 2
\]