The given series is:
\[
S = 1 + \frac{1}{3} + \frac{1.3}{3.6} + \frac{1.3.5}{3.6.9} + \dots \text{ to } \infty.
\]
Step 1: Identifying the pattern
Observing the general term:
\[
T_n = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{3 \cdot 6 \cdot 9 \cdots (3n)}.
\]
This is a standard series expansion for the function:
\[
\sum_{n=0}^{\infty} \frac{(2n-1)!!}{(3n)!!}.
\]
From known mathematical results, the sum of the given infinite series converges to:
\[
\sqrt{3}.
\]
Step 2: Conclusion
Thus, the given series evaluates to:
\[
\boxed{\sqrt{3}}.
\]
Step 1: Express the terms in factorial or double factorial form.
The numerator of the \(n\)-th term (starting from \(n=0\)) is the product of the first \(n\) odd numbers:
\[
1 \cdot 3 \cdot 5 \cdots (2n-1) = (2n-1)!!
\]
The denominator of the \(n\)-th term is:
\[
3 \cdot 6 \cdot 9 \cdots 3n = 3^n (1 \cdot 2 \cdot 3 \cdots n) = 3^n n!
\]
Step 2: Write the general term \(T_n\):
\[
T_n = \frac{(2n-1)!!}{3^n n!}
\]
Step 3: Express double factorial \((2n-1)!!\) in terms of factorial:
\[
(2n-1)!! = \frac{(2n)!}{2^n n!}
\]
Step 5: Recognize the central binomial coefficient:
\[
\binom{2n}{n} = \frac{(2n)!}{(n!)^2}
\]
So:
\[
T_n = \binom{2n}{n} \frac{1}{6^n}
\]
Step 6: Write the series as:
\[
S = \sum_{n=0}^\infty \binom{2n}{n} \left(\frac{1}{6}\right)^n
\]
Step 7: Use the generating function for central binomial coefficients:
\[
\sum_{n=0}^\infty \binom{2n}{n} x^n = \frac{1}{\sqrt{1-4x}}, \quad |x| < \frac{1}{4}
\]
Step 8: Substitute \(x = \frac{1}{6}\) (which is less than \(\frac{1}{4}\)):
\[
S = \frac{1}{\sqrt{1 - \frac{4}{6}}} = \frac{1}{\sqrt{1 - \frac{2}{3}}} = \frac{1}{\sqrt{\frac{1}{3}}} = \sqrt{3}
\]
Therefore, the value of the infinite series is:
\[
\boxed{\sqrt{3}}
\]