\(\lim_{x\rightarrow 0}\)\(\frac{cos^2x-1}{cos\,x-1}\) At x = 0, the value of the given function takes the form 0/0. Now, =\(\lim_{x\rightarrow 0}\)\(\frac{cos^2x-1}{cos\,x-1}\) =\(\lim_{x\rightarrow 0}\)\(\frac{1-2sin^2x-1}{1-2sin^2\frac{x}{2}-1}\) [cosx = 1 - 2sin2\(\frac{x}{2}\)] =\(\lim_{x\rightarrow 0}\)\(\frac{sin^2x}{\frac{sin^2x}{2}}\) = \(\lim_{x\rightarrow 0}\) (\(\frac{sin^2x}{2}\))\(\times\)\(\frac{x^2}{\frac{sin^2x}{2}}\)\(\times\)\(\frac{2}{4}\) =\(\frac{4\lim_{x\rightarrow 0}(\frac{sin^2x}{x^2})}{\lim_{x\rightarrow 0}(\frac{sin^2\frac{x}{2}}{\frac{x}{2}^2})}\) =4 \(\times\)\(\frac{12}{12}\) [\(\lim_{y\rightarrow 0}\)\(\frac{sin\,y}{y}\) = 1] =4