We are asked to evaluate the integral:
\[
\int e^x \left[\frac{1}{1+x(1+x)^2}\right] dx
\]
First, simplify the function inside the integral. Begin by expanding \( 1 + x(1 + x)^2 \):
\[
1 + x(1 + x)^2 = 1 + x(1 + 2x + x^2) = 1 + x + 2x^2 + x^3
\]
The integral becomes:
\[
\int e^x \left[\frac{1}{1+x + 2x^2 + x^3}\right] dx
\]
Recognizing the structure of the integral, this can be simplified to:
\[
\frac{e^x}{1 + x + 2x^2 + x^3}
\]
Thus, the correct answer is:
\[
\boxed{(A) \frac{e^x}{1+x(1+x)^2}}
\]