We are asked to evaluate the following expression involving dot products of unit vectors:
\[
\mathbf{i} \cdot \mathbf{i} + \mathbf{i} \cdot \mathbf{j} + \mathbf{j} \cdot \mathbf{j} + \mathbf{j} \cdot \mathbf{k} + \mathbf{k} \cdot \mathbf{k}
\]
Step 1: Recall the properties of dot products for unit vectors:
- \(\mathbf{i} \cdot \mathbf{i} = 1\)
- \(\mathbf{j} \cdot \mathbf{j} = 1\)
- \(\mathbf{k} \cdot \mathbf{k} = 1\)
- \(\mathbf{i} \cdot \mathbf{j} = 0\), \(\mathbf{i} \cdot \mathbf{k} = 0\), and \(\mathbf{j} \cdot \mathbf{k} = 0\) because the unit vectors are perpendicular to each other.
Step 2: Substitute these values into the expression:
\[
1 + 0 + 1 + 0 + 1 = 3
\]
Thus, the correct answer is: (C) 3.