We are given a complex number in polar form \( \sqrt{2} \left( \cos 56^\circ 15' + i \sin 56^\circ 15' \right) \). We need to compute its 8th power.
Step 1: Apply De Moivre's Theorem.
De Moivre's Theorem states that for a complex number \( r(\cos \theta + i \sin \theta) \), its \( n \)-th power is:
\[
\left[ r(\cos \theta + i \sin \theta) \right]^n = r^n (\cos(n\theta) + i \sin(n\theta))
\]
In our case, \( r = \sqrt{2} \) and \( \theta = 56^\circ 15' \). We need to calculate:
\[
\left[\sqrt{2} \left( \cos 56^\circ 15' + i \sin 56^\circ 15' \right)\right]^8 = (\sqrt{2})^8 \left( \cos(8 \times 56^\circ 15') + i \sin(8 \times 56^\circ 15') \right)
\]
Step 2: Simplify the expression.
First, simplify \( (\sqrt{2})^8 \):
\[
(\sqrt{2})^8 = 2^4 = 16
\]
Next, calculate \( 8 \times 56^\circ 15' \):
\[
8 \times 56^\circ 15' = 450^\circ
\]
Thus, the expression becomes:
\[
16 \left( \cos 450^\circ + i \sin 450^\circ \right)
\]
Since \( 450^\circ = 360^\circ + 90^\circ \), we have:
\[
\cos 450^\circ = \cos 90^\circ = 0, \quad \sin 450^\circ = \sin 90^\circ = 1
\]
So, the expression simplifies to:
\[
16 \left( 0 + i \right) = 16i
\]
Step 3: Conclusion.
Thus, the value of the expression is \( 16i \), and the correct answer is option (4).