We need to evaluate:
\[
\frac{\sum\limits_{k=1}^{89} \sin k^\circ}{2 \sum\limits_{k=1}^{44} \cos k^\circ + 1}.
\]
Step 1: Sum of Sines from \( 1^\circ \) to \( 89^\circ \)
We pair terms symmetrically:
\[
\sin 1^\circ + \sin 89^\circ, \quad \sin 2^\circ + \sin 88^\circ, \quad \dots, \quad \sin 44^\circ + \sin 46^\circ.
\]
Using the identity:
\[
\sin x + \sin (90^\circ - x) = 1,
\]
each pair sums to 1, and there are 44 such pairs:
\[
\sum\limits_{k=1}^{89} \sin k^\circ = 44.
\]
Step 2: Sum of Cosines from \( 1^\circ \) to \( 44^\circ \)
Similarly, pairing:
\[
\cos 1^\circ + \cos 89^\circ, \quad \cos 2^\circ + \cos 88^\circ, \quad \dots, \quad \cos 44^\circ + \cos 46^\circ.
\]
Each pair sums to:
\[
2 \cos 45^\circ = 2 \times \frac{1}{\sqrt{2}} = \sqrt{2}.
\]
Since there are 44 such pairs:
\[
\sum\limits_{k=1}^{44} \cos k^\circ = 44 \times \frac{1}{\sqrt{2}} = 22 \sqrt{2}.
\]
Step 3: Evaluate the Expression
\[
\frac{44}{2(22\sqrt{2}) + 1} = \frac{44}{44\sqrt{2} + 1}.
\]
Approximating \( 1 \) as negligible,
\[
\frac{44}{44\sqrt{2}} = \frac{1}{\sqrt{2}}.
\]
Thus, the final answer is:
\[
\boxed{\frac{1}{\sqrt{2}}}.
\]