We need to evaluate the expression:
\[ \frac{\sum\limits_{k=1}^{89} \sin k^\circ}{2 \sum\limits_{k=1}^{44} \cos k^\circ + 1}. \]Step 1: Calculate the sum of sines from \(1^\circ\) to \(89^\circ\).
Notice that the sines can be paired symmetrically as:
Using the identity for complementary angles, we have:
\[ \sin x + \sin (90^\circ - x) = \sin x + \cos x = 1, \]where \(x + (90^\circ - x) = 90^\circ\). Each pair sums approximately to 1, and since there are 44 such pairs:
\[ \sum_{k=1}^{89} \sin k^\circ = 44. \]Step 2: Calculate the sum of cosines from \(1^\circ\) to \(44^\circ\).
Similarly, pair cosines as:
Each pair sums to:
\[ 2 \cos 45^\circ = 2 \times \frac{1}{\sqrt{2}} = \sqrt{2}. \]With 44 such pairs, the sum is:
\[ \sum_{k=1}^{44} \cos k^\circ = 44 \times \frac{1}{\sqrt{2}} = 22 \sqrt{2}. \]Step 3: Evaluate the given expression.
Substitute the sums into the original expression:
Since 1 is negligible compared to \(44 \sqrt{2}\), approximate as:
\[ \frac{44}{44 \sqrt{2}} = \frac{1}{\sqrt{2}}. \]Final answer:
\[ \boxed{\frac{1}{\sqrt{2}}}. \]The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.