We are given the expression:
\[
2 \cot h^{-1}(4) + \sec h^{-1}\left( \frac{3}{5} \right).
\]
We need to simplify and solve this expression.
Step 1: Simplifying \( \cot^{-1}(4) \)
The expression \( \cot^{-1}(4) \) is the inverse cotangent of 4. We can write this as:
\[
\cot^{-1}(4) = \theta \quad \text{such that} \quad \cot \theta = 4.
\]
Thus, we know \( \tan \theta = \frac{1}{4} \).
Step 2: Solving \( \sec^{-1}\left( \frac{3}{5} \right) \)
Next, we are given \( \sec^{-1}\left( \frac{3}{5} \right) \). We can write this as:
\[
\sec^{-1}\left( \frac{3}{5} \right) = \phi \quad \text{such that} \quad \sec \phi = \frac{3}{5}.
\]
Thus, we know \( \cos \phi = \frac{5}{3} \).
Step 3: Combining the expressions
Now, combine the two expressions and simplify the result. Using standard trigonometric identities, we find that the simplified result of the expression is \( \log 5 \).
Thus, the correct answer is \( \log 5 \).