Step 1: Let \(\theta_1 = \tan^{-1} \frac{3}{1}\) and \(\theta_2 = \tan^{-1} \frac{2}{1}\). Thus,
\[
\tan \theta_1 = 3 \quad \text{and} \quad \tan \theta_2 = 2
\]
We need to evaluate:
\[
\tan \left( \theta_1 + \theta_2 \right)
\]
Step 2: Use the tangent addition formula:
\[
\tan(\theta_1 + \theta_2) = \frac{\tan \theta_1 + \tan \theta_2}{1 - \tan \theta_1 \tan \theta_2}
\]
Substitute the values:
\[
\tan \left( \theta_1 + \theta_2 \right) = \frac{3 + 2}{1 - 3 \cdot 2} = \frac{5}{1 - 6} = \frac{5}{-5} = -1
\]
Step 3: Hence,
\[
\tan \left( \tan^{-1} \frac{3}{1} + \tan^{-1} \frac{2}{1} \right) = -1
\]