Step 1: Let \(\theta = \cot^{-1} x\). This means \(\cot \theta = x\).
Step 2: Use the identity \(\cot \theta = \frac{\cos \theta}{\sin \theta}\), which leads to:
\[
\cot^2 \theta + \sin^2 \theta = 1 \quad \Rightarrow \quad \sin^2 \theta = \frac{1}{1 + x^2}
\]
Thus,
\[
\sin \theta = \frac{1}{\sqrt{1 + x^2}}
\]
Step 3: Therefore,
\[
\sin \left( \cot^{-1} x \right) = \frac{1}{\sqrt{1 + x^2}}
\]
---