1. Evaluate \( \sec^2 \left( \tan^{-1} \frac{1}{2} \right) \):
Let \( \theta = \tan^{-1} \frac{1}{2} \), so \( \tan \theta = \frac{1}{2} \). Construct a right triangle:
\[
{Opposite} = 1, \quad {Adjacent} = 2, \quad {Hypotenuse} = \sqrt{1^2 + 2^2} = \sqrt{5}.
\]
Then:
\[
\sec^2 \theta = \frac{ {Hypotenuse}^2}{ {Adjacent}^2} = \frac{5}{4}.
\]
2. Evaluate \( \csc^2 \left( \cot^{-1} \frac{1}{3} \right) \):
Let \( \phi = \cot^{-1} \frac{1}{3} \), so \( \cot \phi = \frac{1}{3} \). Construct a right triangle:
\[
{Adjacent} = 1, \quad {Opposite} = 3, \quad {Hypotenuse} = \sqrt{1^2 + 3^2} = \sqrt{10}.
\]
Then:
\[
\csc^2 \phi = \frac{ {Hypotenuse}^2}{ {Opposite}^2} = \frac{10}{9}.
\]
3. Add the results:
\[
\sec^2 \left( \tan^{-1} \frac{1}{2} \right) + \csc^2 \left( \cot^{-1} \frac{1}{3} \right) = \frac{5}{4} + \frac{10}{9}.
\]
Taking the LCM:
\[
\frac{5}{4} + \frac{10}{9} = \frac{45 + 40}{36} = \frac{85}{36}.
\]
Final Answer: \( \boxed{\frac{85}{36}} \)