Evaluate \( \int \frac{dx}{x(x^2 - 1)} \).
Step 1: Partial Fraction Decomposition
Factorize the denominator:
\[
\frac{1}{x(x^2 - 1)} = \frac{1}{x(x - 1)(x + 1)}
\]
Assume the decomposition:
\[
\frac{1}{x(x - 1)(x + 1)} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 1}
\]
Multiply by \( x(x - 1)(x + 1) \):
\[
1 = A(x - 1)(x + 1) + Bx(x + 1) + Cx(x - 1)
\]
Step 2: Solve for coefficients
Expanding and comparing coefficients:
\[
A + B + C = 0, \quad B - C = 0, \quad -A = 1
\]
Solving, we get:
\[
A = -1, \quad B = \frac{1}{2}, \quad C = \frac{1}{2}
\]
Step 3: Integrate each term
\[
\int \left( \frac{-1}{x} + \frac{1/2}{x - 1} + \frac{1/2}{x + 1} \right) dx
\]
\[
= -\ln|x| + \frac{1}{2} \ln|x - 1| + \frac{1}{2} \ln|x + 1| + C
\]
Step 4: Combine logarithms
\[
\int \frac{dx}{x(x^2 - 1)} = \frac{1}{2} \ln \left| \frac{x^2 - 1}{x^2} \right| + C
\]